Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




New Method Improves Accuracy of NIRF-IVUS Measurements in Cardiovascular Imaging

By HospiMedica International staff writers
Posted on 17 Apr 2023

Intravascular ultrasound (IVUS) allows cardiologists to capture images of blood vessels' interiors using a slim ultrasound probe, which can then be used to assess issues like arterial thickening due to fat or plaque accumulation. More...

Near-infrared fluorescence (NIRF) imaging is employed alongside IVUS for a more comprehensive evaluation of blood vessels. NIRF relies on fluorescent agents that highlight biological processes within the body. When injected into the bloodstream, these agents bind to specific pathology-related compounds on vessel walls, such as proteins or nucleic acids. The resulting fluorescence signals are combined with IVUS images for enhanced accuracy. However, during NIRF-IVUS measurements, the distance between the NIRF detector and the blood vessel wall continually changes. This presents a challenge, as blood attenuates the fluorescence signals' intensity, and the "amount" of blood between the NIRF detector and the vessel wall constantly varies.

A team of researchers led by the Technical University of Munich (TUM, Munich, Germany) has come up with an innovative solution to this problem. In a study, the team created a new technique to measure blood's fluorescence attenuation using a "guidewire" that moves the NIRF-IVUS probe. The concept is based on the constant visibility of the guidewire to the NIRF probe. By coating the guidewire with a known concentration of fluorescent particles, the guidewire signal offers an indirect measure of blood attenuation in the current image. The distance between the NIRF probe and the guidewire, as well as the blood vessel wall, is determined via IVUS, allowing for the calculation of a correction factor for the fluorescence signal measured at the blood vessel wall after a simple calibration procedure.

The team tested their technique in a clinical model using a small NIRF-IVUS system from a previous study and conducted experiments on capillary phantoms, which mimic small blood vessels' properties. They observed a 4.5-fold improvement over uncorrected NIRF signals and <11% errors for target signals, showing great promise. The correction method also maintained a mean accuracy of 70% in tissue experiments. These figures are significantly better than those achieved by other correction methods that use average attenuation factors instead of calculating them for each frame and precise probe-to-vessel distances measured via IVUS. The researchers believe that incorporating their technique into clinical practice should be relatively straightforward since no major modifications to existing equipment are necessary. With the appropriate coatings, the guidewire can serve as a reference standard for other intravascular fluorescence imaging modalities and optical methods beyond fluorescence.

“This new method for correcting intravascular NIRF signals is simple and accurate and could pave the way for in vivo studies and eventual clinical translation,” said Brian Pogue, Professor of Medical Physics at the University of Wisconsin-Madison.

Related Links:
TUM 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ultrasound Needle Guidance System
SonoSite L25
Mammo DR Retrofit Solution
DR Retrofit Mammography
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.