We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Wireless Endoscopy System Leverages Holographic Imaging for CPLD

By HospiMedica International staff writers
Posted on 03 May 2023

A new holographic imaging-based endoscopy system for Complex Programmable Logic Device (CPLD) aims to advance the miniaturization of medical devices and the development of medical optoelectronic microsensors. More...

WiMi Hologram Cloud, Inc. (Beijing, China) is developing a CPLD wireless endoscopy system that relies on a microelectromechanical system composed of microsensors for detecting external digital information, controlling actuators, signal processing, and communication interfaces, along with control circuits and power supplies. This integrated microsystem facilitates the capture, processing, and execution of holographic digital information, offering multiple functions. The system includes a host and a hologram acquisition endoscope that captures the original image. The image undergoes compressed transmission processing and is wirelessly transmitted to the host, which then forwards the compressed data to the host system for display through hologram restoration management software.

Equipped with a CPLD chip and a high-precision CMOS lens, the hologram acquisition endoscope is designed for hologram capture and data and address bus management. It achieves holographic lossless digital image compression and wireless data transmission, including the acquisition and control of system data such as pressure, temperature, and light sensing. The system allows continuous holographic data collection and control of temperature, pressure, humidity, and light sensing. Hologram data acquisition is the system's core function. The host control system sends commands, and the system management software wirelessly transmits these commands to the hologram acquisition endoscope.

The hologram acquisition endoscope receives the image acquisition command and controls the CPLD to acquire the data. The CPLD writes the collected holographic data images to multiple parallel memories and compresses them through the controller. The parallel processing of data improves the transmission efficiency of holographic high-precision images of the system. The host management software sends instructions to receive the lossless compressed digital content, decodes the compressed digital images, and displays the 3D holographic endoscopic graphics. The high data volume and correlation of hologram acquisition imaging technology require redundant lossless data compression. The medical field requires high image quality, so lossless compression algorithms must be used. With WiMi's holographic digital content compression and processing system, coding redundancy, spatial redundancy, temporal redundancy, and irrelevant information can be eliminated.

The system can solve the coding redundancy in digital content where the word code is greater than the entropy of the optimal coding formation; spatial redundancy caused by correlation between adjacent pixels; temporal redundancy caused by the existence of a correlation between different frames in the sequence, spectral redundancy caused by correlation brought by different colors or spectra, etc. The optimized data can significantly improve transmission speed and efficiency. After that, the system performs lossless restoration, which plays a high-fidelity restoration of the endoscopic hologram data. With various types of sensor data, doctors can have a more intuitive and comprehensive understanding of the patient's profile, improve their judgment of the disease, and give proper treatment plans.

Related Links:
WiMi Hologram Cloud, Inc.


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Radiation Safety Barrier
RayShield Intensi-Barrier
Half Apron
Demi
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.