We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

New 3D Printing and Hydrogel Technology to Improve Biomedical Implants

By HospiMedica International staff writers
Posted on 17 May 2023
Print article
Image: 3D printing can be used to improve implantable biomedical devices, touchscreens and more (Photo courtesy of McGill)
Image: 3D printing can be used to improve implantable biomedical devices, touchscreens and more (Photo courtesy of McGill)

Implantable biomedical devices such as pacemakers and blood pressure monitors need to be designed and produced in a manner that they not only fit and adhere to the body but also dissolve at the appropriate time. Now, an innovative technique incorporating 3D printing and hydrogels shows promise in enhancing biomedical implants and could also be beneficial in creating human-machine interfaces, including touch screens and neural implants.

Researchers at McGill University (Montreal, Quebec, Canada) are making progress in creating devices that are more compatible with the human body than existing electronic devices, thanks to the use of 3D printing and hydrogel technologies. This emerging technology, known as soft ionotronics, holds the potential to revolutionize wearable and implantable biomedical devices. For instance, individuals undergoing neuromuscular rehabilitation could take advantage of soft, flexible strain and pressure sensors that can attach to their joints.

The new soft ionotronics are more compatible with the human body, both mechanically and electrically, as compared to traditional rigid electronics. They offer immense potential for applications in human-machine interfaces, wearable and implantable devices, and flexible machinery. Ionic junctions, a type of ionotronic device, are crucial for rectifying currents in the same way as electrical p–n junctions. However, current ionic junctions face challenges in terms of electrical and mechanical performance, fabrication, and degradation. The newly introduced 3D printing technique has shown excellent printing capabilities and has enabled the researchers to create ionic junctions of different configurations with high fidelity.

“Compared to traditional manual fabrication methods, 3D printed ionic junctions can have much better shape fidelity and smaller sizes,” said Ran Huo, lead author of the study and PhD candidate in McGill’s Department of Engineering. “Shape fidelity is important for any device to function in the way it is designed. The smaller size means more ionic junctions can be included in one single device of limited size.”

Related Links:
McGill University 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
Enteral Feeding Pump
Automatic External Defibrillator
Lifeline ECG AED
Osteodrive System
MCI-270 Series

Print article


Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more


view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.