We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Soft Robotic Electrode Offers Minimally Invasive Solution for Craniosurgery

By HospiMedica International staff writers
Posted on 26 May 2023
Print article
Image: The deployable electrodes are ideal for minimally invasive craniosurgery (Photo courtesy of EPFL)
Image: The deployable electrodes are ideal for minimally invasive craniosurgery (Photo courtesy of EPFL)

Minimally invasive medical procedures offer numerous benefits to patients, including decreased tissue damage and shorter recovery periods. However, creating equipment that can pass through a small opening and function effectively on the other side calls for some innovative designing. Now, researchers have developed a cortical electrode that can be inserted through a tiny opening in the skull and still provide significant data on brain electrical activity.

Researchers at EPFL (Lausanne, Switzerland) were tasked with creating a large cortical electrode array that could be introduced through a tiny skull opening. The aim was to deploy the device in the small space of about 1mm between the skull and the brain surface, all without causing harm to the brain. The researchers invented a soft robotic electrode, capable of being inserted through a small skull opening, which unfolds a series of spiral arms, thereby allowing for electrocorticography measurements from a relatively larger brain surface area. This technology could be extremely beneficial for neurosurgeons aiming to map brain regions responsible for epileptic seizures, then surgically address these problematic areas. By minimizing the portion of the skull removed during surgery, patient recovery is faster, and trauma associated with such procedures is reduced.

The initial prototype comprises an electrode array small enough to fit through a 2 cm diameter hole, but when unfolded, it extends across a 4 cm diameter surface. It features six spiral-shaped arms designed to maximize the electrode array's surface area and, therefore, the number of electrodes interacting with the cortex. Straight arms can lead to uneven electrode distribution and reduced contact surface area with the brain. Resembling a spiraled butterfly compactly tucked within its cocoon before transformation, the electrode array, with its spiral arms, is neatly contained within a cylindrical tube, or loader, ready for insertion through the small skull opening. An averting actuation mechanism inspired by soft robotics enables the spiraled arms to be gently deployed over sensitive brain tissue, one at a time.

The electrode array looks similar to a rubber glove, with flexible electrodes patterned on one side of each spiral-shaped "finger." The "glove" is turned inside-out and housed within the cylindrical loader. For deployment, liquid is inserted into each "inverted finger" individually, causing it to revert and unfold over the brain. The electrode pattern is created by evaporating flexible gold onto highly compliant elastomer materials. The deployable electrode array has been successfully tested in a mini-pig.

“Minimally invasive neurotechnologies are essential approaches to offer efficient, patient-tailored therapies,” said Stéphanie Lacour, professor at EPFL Neuro X Institute. “We needed to design a miniaturized electrode array capable of folding, passing through a small hole in the skull and then deploying in a flat surface resting over the cortex. We then combined concepts from soft bioelectronics and soft robotics.”

Related Links:
EPFL 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Orthopedic Extension
AMSCO

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.