We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Technology Allows Neurosurgeons to Identify Brain Tumor Type during Surgery

By HospiMedica International staff writers
Posted on 13 Oct 2023
Print article
Image: AI speeds up identification brain tumor type (Photo courtesy of UMC Utrecht)
Image: AI speeds up identification brain tumor type (Photo courtesy of UMC Utrecht)

When it comes to treating children with tumors in the brain or spinal cord, surgery is often the initial course of action. However, during the procedure, neurosurgeons are typically in the dark about the specific type of tumor and its degree of aggressiveness. A definitive diagnosis is generally not available until a week post-surgery, once the pathologist has thoroughly examined the tumor tissue both visually and molecularly. A breakthrough technology now enables the identification of the tumor type during the surgery itself, within just 1.5 hours, which allows for real-time adjustments to the surgical approach.

Researchers from UMC Utrecht (Utrecht, Netherlands) have come up with a deep-learning algorithm that significantly speeds up the diagnostic process. Leveraging the recently introduced nanopore sequencing technology capable of real-time DNA reading, the researchers have designed an algorithm capable of learning from millions of simulated but realistic DNA sequences. Named 'Sturgeon,' this algorithm can identify the type of tumor in a matter of 20 to 40 minutes, fast enough to alter surgical plans on the fly if needed.

The deep learning algorithm underwent training and validation using a wealth of data from a comprehensive biobank containing tissue samples from children with brain tumors. It was also practically applied multiple times in actual brain surgeries, from the extraction of the tissue sample to determining the type of tumor. Sometimes, a small piece of the tumor tissue is intentionally left behind during surgery to avert neurological complications. If it's later found that the tumor is particularly aggressive, a second surgery may be required, putting additional stress and risks on the patient and their family. This new algorithm eliminates that uncertainty by giving surgeons real-time information about the tumor type.

While the technology is promising, further research is needed to broaden its application. Additional tumor types could be incorporated into the algorithm to meet international standards and enable data comparison. Moreover, outcomes between this new quick method and the current, lengthier one will be compared in collaboration with other domestic and international centers to gauge whether the new technique also enhances patients' quality of life in the long-term.

“It is truly exciting that we have been able to actually make the step into clinical practice by combining all areas of expertise, from basic researchers to pathologists and surgeons. By doing so, we can help surgeons to optimize the outcome of brain tumor surgery,” said Jeroen de Ridder, research group leader within UMC Utrecht.

Related Links:
UMC Utrecht 

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Medical-Grade POC Terminal
POC-821
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Critical Care

view channel
Image: Changes in immune cells can predict patient recovery following out-of-hospital cardiac arrest (Photo courtesy of Adobe Stock)

Activating T Cells Could Improve Neurological Outcomes After Cardiac Arrest

Despite advancements in cardiopulmonary resuscitation (CPR) and improved hospital access, survival rates after out-of-hospital cardiac arrest (OHCA) remain low, with only about 10% of patients surviving.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.