We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Miniature Laser System Could Accurately Distinguish Tumors from Healthy Tissue

By HospiMedica International staff writers
Posted on 07 Dec 2023

The integration of lasers into ophthalmology since the early 1990s marked a significant technological advancement, and since then, laser technology has expanded its reach into other medical fields. More...

The use of lasers in surgery offers numerous benefits over traditional tools like scalpels and saws. However, their adoption has been limited to specific applications, partly due to concerns about potential injury to adjacent tissues and the challenge of controlling the cutting depth that could accidentally damage the deeper layers of tissue. Despite these challenges, laser technology continues to evolve, becoming more sophisticated and precise. Now, new research could significantly enhance the safe and effective use of lasers in surgical procedures.

A research team from the University of Basel (Basel, Switzerland) has made a notable breakthrough by creating a laser system that combines three critical functionalities: bone cutting, cutting depth control, and tissue differentiation. This multifunctional system employs three lasers, all focused on a single point. The first laser functions as a tissue sensor, scanning the area around the bone-cutting site. It emits regular pulses, vaporizing tiny tissue samples, whose composition is then analyzed by a spectrometer. Each tissue type emits a distinct spectrum, allowing the creation of a detailed map distinguishing bone from soft tissue. Only after this mapping process does the second laser, designed for bone cutting, activate, targeting areas identified as bone on the generated map. Concurrently, the third laser, an optical system, monitors the depth of the cut, ensuring it doesn’t exceed the intended level.

Throughout the procedure, the tissue sensor continuously verifies that the correct tissue is being cut. This self-regulating system operates autonomously, without human intervention. The team has conducted tests on pig femur bones and tissues, demonstrating the system’s precision down to minute fractions of a millimeter. The speed of this laser system is also comparable to conventional surgical methods. Current efforts are focused on reducing the system's size. The researchers have successfully condensed the optical and cutting lasers into a matchbox-sized unit. The next step is to incorporate the tissue sensor and further miniaturize the entire setup, ultimately fitting it into an endoscope for minimally invasive surgeries. This advanced system has potential applications across various surgical fields. It could, for instance, enable surgeons to more accurately differentiate and excise tumors from healthy tissue, minimizing the removal of uninvolved surrounding tissue. Additionally, the controlled laser cutting allows for innovative cut shapes, which could enhance the integration of bone implants with existing bone structures.

“Making more use of lasers in surgery is a worthy ambition for a number of reasons,” said Dr. Arsham Hamidi, lead author of the study. Contact-free cutting somewhat reduces the risk of infections, he points out. “Smaller and more precise incisions also mean that the tissue heals more rapidly, and that scarring is reduced.”

Related Links:
University of Basel 


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Trocar
TAN RoTaLock Trocar
New
High Pressure Balloon Catheter
UroMax Ultra
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.