Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Beating Biorobotic Heart Allows Surgeons to Collect Real-Time Data during Surgery

By HospiMedica International staff writers
Posted on 11 Jan 2024

New interventions must undergo rigorous testing in heart simulators and animal subjects before reaching humans. More...

However, current heart simulators fail to completely capture the complexity of a heart and have a short shelf-life of two to four hours. Also, animal studies can be expensive and time-consuming, with findings not always translating to humans. Now, scientists have achieved a significant milestone by creating a biorobotic heart, which accurately simulates the beating of a real human heart, marking a huge step forward in the field of cardiac surgery training and practice.

This advancement by scientists at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) primarily targets mitral regurgitation, a condition where the heart's left chamber valve doesn't close effectively, leading to reverse blood flow. This ailment affects approximately 24.2 million people worldwide and can result in symptoms like breathlessness, limb swelling, and heart failure. The complexity of the valve's structure makes surgical interventions to correct this issue highly sophisticated, creating the need for accurate technology and surgical techniques. The biorobotic heart, developed by the MIT team, is based on a pig heart model. The researchers replaced the left chamber's heart muscle with a silicone robotic pump system operated by air. This innovative system mimics real heart muscle actions by twisting and squeezing, thus pumping artificial blood through a simulated circulation system and replicating the beating of a biological heart.

When the team intentionally damaged the mitral valve of the biorobotic heart, it exhibited characteristics of a leaky heart valve. Cardiac surgeons then successfully repaired the damage using three different methods: anchoring the damaged valve leaflet tissue with artificial chords, replacing the valve with a prosthetic one, and implanting a device to assist in valve leaflet closure. These procedures restore the heart's normal function, pressure, and flow. The system also enabled the research team to collect real-time data during the surgeries and is compatible with existing clinical imaging technologies. The use of clear artificial blood in the system allows for direct visualization of the procedures. This novel heart model is seen as a significant step forward in the field of cardiac surgery training and practice. The research team is now focused on further improving the biorobotic heart system by reducing the production time and extending its shelf life. They are also exploring the use of 3D printing technology to create a synthetic human heart for the system, which could enhance its capabilities and applications.

“The simulator has a huge benefit as a research tool for those who study different heart valve conditions and interventions,” says senior author and biomedical engineer Ellen Roche of the MIT. “It can serve as a surgical training platform for clinicians, medical students, and trainees, allow device engineers to study their new designs, and even help patients better understand their own disease and potential treatments.”

Related Links:
MIT


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Open Stapler
PROXIMATE Linear Cutter
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.