We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Nanosurgical Tool Performs Biopsy of Living Cell Repeatedly during Exposure to Cancer Treatment

By HospiMedica International staff writers
Posted on 08 Mar 2024
Print article
Image: Electron microscopy image of the nanopipette (Photo courtesy of University of Leeds)
Image: Electron microscopy image of the nanopipette (Photo courtesy of University of Leeds)

Cancer cell plasticity, a phenomenon wherein cells alter their behavior, poses a significant challenge in cancer therapy, especially since it is not well understood. This adaptability is particularly evident in Glioblastoma (GBM) cancer cells, known for their rapid adaptation, leading to resistance against radiotherapy and chemotherapy. Understanding these adaptive mechanisms and finding ways to counter them could be pivotal in preventing cancer recurrence, a common issue with GBM. Traditional single-cell study methods usually destroy the cells during analysis, limiting observations to either pre or post-treatment stages. Now, a breakthrough nanosurgical tool, which is around 500 times thinner than a human hair, could offer unprecedented insights into cancer treatment resistance.

The high-tech double-barrel nanopipette, developed by scientists at the University of Leeds (West Yorkshire, UK), enables - for the first time - the observation of individual living cancer cells' responses to treatment over time. This tool is equipped with two nanoscopic needles that enable simultaneous injection and extraction from the same cell, thus broadening the scope of its application. The semi-automatic nature of the platform significantly enhances the speed of data collection, allowing for more efficient and accurate analysis of a larger number of individual cells than ever before.

The nanosurgical device can perform repeated biopsies on a living cell throughout cancer treatment. It samples small portions of the cell's contents without causing cell death, thereby letting scientists monitor the cell's reaction over a period. In their research focusing on GBM, the scientists used this tool to evaluate how cancer cells develop resistance to chemotherapy and radiotherapy. Due to its minuscule size, the nanopipette is operated through robotic software that precisely controls the tiny needles, maneuvering them into the cells in a petri dish. The second needle of the nanopipette is crucial in operating the device. This innovation allows scientists to take repeated samples, enabling them to track disease progression in individual cells, a feat previously unachievable with existing technologies.

“This is a significant breakthrough. It is the first time that we have a technology where we can actually monitor the changes taking place after treatment, rather than just assume them,” said Dr. Lucy Stead, Associate Professor of Brain Cancer Biology at the University of Leeds’ School of Medicine. “This type of technology is going to provide a layer of understanding that we have simply never had before. And that new understanding and insight will lead to new weapons in our armory against all types of cancer.”

Related Links:
University of Leeds

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Infusion Stand Rotatable Clamp
10-400 Infusion Stand Rotatable Clamp
New
Pediatric Bassinet and Trolley
BTC 401

Print article
Radcal

Channels

Critical Care

view channel
Image: Overview concept and material design of the bioabsorbable electrical stimulation suture (BioES-suture) for treating muscle gashes (Photo courtesy of Nature Communications; DOI: 10.1038/s41467-024-52354-x)

Cutting-Edge Intelligent Medical Sutures Accelerate Wound Healing

In surgical medicine, sutures are the standard treatment for large incisions, but traditional sutures have functional limitations. Electrical stimulation is a non-drug therapy known to enhance wound healing.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The AI-powered platform improves point-of-care diagnostics with enhanced accuracy and real-time data (Photo courtesy of HueDx)

Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing

Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.