We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Shape-Shifting Ultrasound Stickers Detect Post-Surgical Complications

By HospiMedica International staff writers
Posted on 08 Mar 2024
Print article
Image: Three variations of the soft, flexible ultrasound sticker device displayed on a finger (Photo courtesy of Northwestern University)
Image: Three variations of the soft, flexible ultrasound sticker device displayed on a finger (Photo courtesy of Northwestern University)

Anastomotic leaks are a serious post-operative complication that can occur following gastrointestinal surgeries. These leaks are caused by gastrointestinal fluids escaping through subtle perforations or gaps in the surgical incision, posing significant health risks. Despite the prevalence of such leaks in all gastrointestinal surgeries, current diagnostic methods fall short in reliably and non-invasively detecting them. Neither ultrasound imaging tools nor advanced CT and MRI scans can directly identify these types of defects. Now, a first-of-its-kind sticker could enable clinicians to monitor these abnormal, life-threatening fluid leaks with a simple ultrasound device.

Developed collaboratively by researchers from Northwestern University (Evanston, IL, USA) and Washington University School of Medicine in St. Louis (St. Louis, MO, USA), the new soft and tiny sticker changes in shape when attached to an organ in response to the body’s changing pH levels. These shape changes, triggered by fluid leakage, can be monitored in real-time through ultrasound imaging. This groundbreaking approach allows for the early detection of post-surgery complications including anastomotic leaks, enabling timely interventions. Remarkably, once the patient fully recovers, the sticker, made of biocompatible and bioresorbable materials, dissolves naturally, eliminating the need for surgical removal.

The small, tissue-adhesive sticker is created using a flexible, chemically responsive, soft hydrogel material embedded with tiny, paper-thin metal disks. When exposed to leaking fluids, the hydrogel swells, causing the embedded metal discs to move apart. This subtle movement can then be visualized using ultrasound. To cater to different post-surgical needs, the stickers come in various sizes, ranging from a diameter of 12 millimeters to as small as 4 millimeters. Additionally, to overcome the potential challenge in manually interpreting these ultrasound images, the researchers have also developed specialized software that can automatically analyze the images for accurate detection of the relative movement of the discs.

The sticker's effectiveness was confirmed in rigorous testing with both small and large animal models. Ultrasound imaging consistently identified shape changes in the sticker, even when positioned 10 centimeters deep within tissues. The sticker responded to abnormal pH levels of leaked fluids within minutes, altering its shape accordingly. Ideal for use as an implant at the end of a surgical procedure, its small, flexible design also allows for it to be inserted into the body via a syringe. Due to their compact, thin, and soft nature, surgeons can place multiple stickers at different sites as needed. Moving forward, the research team is investigating the development of similar tags for detecting internal bleeding or temperature changes, thus expanding the scope of this innovative technology.

“Detecting changes in pH is a good starting point,” said Northwestern’s John A. Rogers, who led device development. “But this platform can extend to other types of applications by use of hydrogels that respond to other changes in local chemistry, or to temperature or other properties of clinical relevance.”

Related Links:
Northwestern University
Washington University School of Medicine in St. Louis

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Monitor Cart
Tryten S5
New
LED Examination Lamp
Clarity 50 LED

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.