We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Ultrasound Imaging Technology Allows Doctors to Watch Spinal Cord Activity during Surgery

By HospiMedica International staff writers
Posted on 11 Mar 2024
Print article
Image: Doctors can now watch spinal cord activity during surgery (Photo courtesy of UC Riverside)
Image: Doctors can now watch spinal cord activity during surgery (Photo courtesy of UC Riverside)

Back pain treatments during surgery have historically been difficult to evaluate effectively, largely because patients under anesthesia cannot communicate their pain levels. Furthermore, imaging the spinal cord – a crucial part of back pain treatment assessment – presents its own challenges. The spinal cord, referred to as an "unfriendly area" for traditional imaging, is subject to significant motion artifacts caused by heart pulsation and breathing, which introduce unwanted noise into the signal. These factors make the spinal cord a challenging target for standard neuroimaging techniques. Now, for the first time, an ultrasound imaging technology enables the generation of high-resolution images of the human spinal cord during surgery, marking a significant advancement that could provide relief for millions suffering from chronic back pain.

The technology, known as fUSI or functional ultrasound imaging, has been developed by scientists at UC Riverside (Riverside, CA, USA) and enables clinicians to observe the spinal cord and map its response to various treatments in real-time. Notably, the fUSI scanner is mobile and does not require the extensive infrastructure typically associated with classical neuroimaging methods like functional magnetic resonance imaging (fMRI). Additionally, fUSI has a reduced sensitivity to motion artifacts compared to other imaging techniques. It works by emitting sound waves into the targeted area, and the red blood cells in that region echo the sound back, producing a detailed image.

The application of fUSI was tested on six patients suffering from chronic low back pain, all of whom were scheduled for last-resort pain surgery, as no other treatments, including medication, had provided relief. In these procedures, clinicians stimulated the spinal cord with electrodes, hoping that the electrical stimulation would lessen the patients’ pain and enhance their quality of life. The results revealed that fUSI could detect changes in blood flow at unprecedentedly low speeds, less than one millimeter per second, marking a significant improvement over the two-centimeter-per-second detection capability of fMRI. This level of sensitivity suggests that the success rate of such surgeries, currently around 50%, could be significantly improved with the use of fUSI. Going forward, the researchers also plan to demonstrate fUSI's potential in optimizing treatments for individuals who have lost bladder control due to spinal cord injuries or aging.

“With less risk of damage than older methods, fUSI will enable more effective pain treatments that are optimized for individual patients,” said Vasileios Christopoulos, assistant professor of bioengineering at UC Riverside, who is pioneering the use of fUSI for spinal cord imaging. “It is a very exciting development.”

Related Links:
UC Riverside

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Heart-Lung Machine
HL 40

Print article


Critical Care

view channel
Image: This study is significant as it addresses a treatment approach that has not been extensively studied before (Photo courtesy of 123RF)

Study Confirms Safety of DCB-Only Strategy for Treating De Novo Left Main Coronary Artery Disease

There has been a lack of extensive research on the use of drug-coated balloon (DCB)-only strategy for the treatment of de novo left main coronary artery disease, especially in high bleeding risk (HBR) patients.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.