We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Ultrasound Imaging Technology Allows Doctors to Watch Spinal Cord Activity during Surgery

By HospiMedica International staff writers
Posted on 11 Mar 2024
Print article
Image: Doctors can now watch spinal cord activity during surgery (Photo courtesy of UC Riverside)
Image: Doctors can now watch spinal cord activity during surgery (Photo courtesy of UC Riverside)

Back pain treatments during surgery have historically been difficult to evaluate effectively, largely because patients under anesthesia cannot communicate their pain levels. Furthermore, imaging the spinal cord – a crucial part of back pain treatment assessment – presents its own challenges. The spinal cord, referred to as an "unfriendly area" for traditional imaging, is subject to significant motion artifacts caused by heart pulsation and breathing, which introduce unwanted noise into the signal. These factors make the spinal cord a challenging target for standard neuroimaging techniques. Now, for the first time, an ultrasound imaging technology enables the generation of high-resolution images of the human spinal cord during surgery, marking a significant advancement that could provide relief for millions suffering from chronic back pain.

The technology, known as fUSI or functional ultrasound imaging, has been developed by scientists at UC Riverside (Riverside, CA, USA) and enables clinicians to observe the spinal cord and map its response to various treatments in real-time. Notably, the fUSI scanner is mobile and does not require the extensive infrastructure typically associated with classical neuroimaging methods like functional magnetic resonance imaging (fMRI). Additionally, fUSI has a reduced sensitivity to motion artifacts compared to other imaging techniques. It works by emitting sound waves into the targeted area, and the red blood cells in that region echo the sound back, producing a detailed image.

The application of fUSI was tested on six patients suffering from chronic low back pain, all of whom were scheduled for last-resort pain surgery, as no other treatments, including medication, had provided relief. In these procedures, clinicians stimulated the spinal cord with electrodes, hoping that the electrical stimulation would lessen the patients’ pain and enhance their quality of life. The results revealed that fUSI could detect changes in blood flow at unprecedentedly low speeds, less than one millimeter per second, marking a significant improvement over the two-centimeter-per-second detection capability of fMRI. This level of sensitivity suggests that the success rate of such surgeries, currently around 50%, could be significantly improved with the use of fUSI. Going forward, the researchers also plan to demonstrate fUSI's potential in optimizing treatments for individuals who have lost bladder control due to spinal cord injuries or aging.

“With less risk of damage than older methods, fUSI will enable more effective pain treatments that are optimized for individual patients,” said Vasileios Christopoulos, assistant professor of bioengineering at UC Riverside, who is pioneering the use of fUSI for spinal cord imaging. “It is a very exciting development.”

Related Links:
UC Riverside

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Surgical Needle
PORT-JECT

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.