We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Bioengineering Breakthrough to Improve Bone Regeneration Treatments

By HospiMedica International staff writers
Posted on 12 Jun 2024
Print article
Image: The bioengineering breakthrough helps repair damaged bones without causing negative side effects (Photo courtesy of Dhawan, et al.; https://doi.org/10.1002/adma.202310789)
Image: The bioengineering breakthrough helps repair damaged bones without causing negative side effects (Photo courtesy of Dhawan, et al.; https://doi.org/10.1002/adma.202310789)

Growth factor therapies, which involve the targeted delivery of specific proteins to stimulate tissue regeneration, are promising techniques for enhancing the body's natural healing processes. However, these therapies can lead to significant side effects when applied to bone healing. To be effective, active proteins must be administered in high concentrations at the site of bone fractures or defects. This can result in uncontrolled growth factor release, leading to ectopic bone formation, where bone grows in unintended places. Additionally, these treatments can trigger postoperative inflammation, adversely affecting patients' health.

In a significant bioengineering advancement, researchers at the University of Glasgow (Glasgow, Scotland) have discovered a novel approach to utilize growth factors for bone repair without the adverse effects associated with previous methods, promising improved outcomes for patients. This innovation could pave the way for developing new therapeutic options for individuals with severe skeletal injuries or cancer patients needing to regenerate bone tissue lost to illness.

The team employed a cost-effective polymer known as poly(ethyl acrylate), or PEA, to create a surgical implant suitable for use in bone defects. The implant's surface possesses unique properties that allow it to bind the body’s inactive growth factors, activating them only at the necessary site. The researchers tested the efficacy of these implants in mice with significant bone defects and observed complete regeneration of the bone and controlled bone formation in the targeted areas throughout the study. The findings of the study were published in Advanced Materials on June 6, 2024

“The biological processes that underpin this study have been understood for more than two decades, but this is the first time that they’ve been harnessed to produce this regenerative effect,” said Dr. Udesh Dhawan, Research Fellow at the University of Glasgow’s James Watt School of Engineering. “Being able to deliver immobilized proteins directly to the treatment site in this way provides much more control over how growth factors become active and start the healing process. It also works at much lower concentrations than previous treatments, helping further minimize the chances of unwanted bone growth beyond the site in need of healing.”

Related Links:
University of Glasgow 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
1.5T MRI Scanner
MAGNETOM Amira

Print article

Channels

Surgical Techniques

view channel
Image: The ExcelsiusFlex and ACTIFY 3D Total Knee System have been granted FDA 510(k) clearance (Photo courtesy of Globus Medical)

New Robotic Navigation Platform Provides Surgeons Best-In-Class Solution for Orthopedic Treatment

Globus Medical (Audubon, PA, USA) has secured 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its new robotic navigation platform, ExcelsiusFlex, tailored for total knee arthroplasty... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.