We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New Material Aids Facial Skin Reconstruction

By HospiMedica International staff writers
Posted on 11 Aug 2011
Print article
An injectable composite of biological and synthetic molecules shows promise in restoring damaged soft tissue relatively safely and durably.

Researchers at Johns Hopkins University (Baltimore, MD, USA) created the new composite material from hyaluronic acid (HA), a natural component in skin of young people that confers elasticity, and polyethylene glycol (PEG), a synthetic molecule used successfully as surgical glue in operations and known not to cause severe immune reactions. The PEG can be cross-linked-- forming sturdy chemical bonds between many individual molecules--using energy from light, which traps the HA molecules with it. Such cross-linking makes the implant hold its shape and not dissipate away from the injection site.

To develop the best PEG-HA composite with the highest long-term stability, the researchers injected different concentrations of PEG and HA under the skin and into the back muscle of rats, used a green light emitting diode (LED) light to gel the material, and then used magnetic resonance imaging (MRI) to monitor the persistence of the implant over time. The MRIs and direct measurements of the implants showed that the ones created from HA and the highest tested concentration of PEG with HA remained the same size over time, compared to injections of only HA, which shrank over time.

The researchers also evaluated the safety and persistence of the PEG-HA implants in three volunteers undergoing abdominoplasty. Technicians injected about five drops of PEG-HA or HA alone under the belly skin. The participants said they sensed heat and pain during the gel setting process; 12 weeks after implantation, MRI revealed no loss of implant size in patients. Removal of the implants and inspection of the surrounding tissue revealed mild to moderate inflammation, a response similar to that seen in the rats, although the types of white blood cells (WBCs) responding to implant differed between the rodents and humans. The difference was attributed to the fact that the target tissue in the rats (muscle) was different than human belly fat. The study was published in the July 27, 2011, issue of Science Translational Medicine.

“Implanted biological materials can mimic the texture of soft tissue, but are usually broken down by the body too fast, while synthetic materials tend to be more permanent but can be rejected by the immune system and typically don’t meld well with surrounding natural tissue,” said lead author Prof. Jennifer Elisseeff, MD, PhD, director of the Translational Tissue Engineering Center at JHU School of Medicine. “Our composite material has the best of both worlds, with the biological component enhancing compatibility with the body and the synthetic component contributing to durability.”

“Many of the skin fillers available on the market consisting of HA-like materials used for face lifts are only temporarily effective, and are limited in their ability to resculpt entire areas of the face,” added Professor Elisseeff. “Our hope is to develop a more effective product for people, like our war veterans, who need extensive facial reconstruction.”

Related Links:

Johns Hopkins University

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Electric Bariatric Patient Lifter
SVBL 205

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.