We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Wireless Probe Detects Cancer Cells During Surgery

By HospiMedica International staff writers
Posted on 23 Jun 2016
Print article
Image: The EPFL Beta probe (Photo courtesy of EPFL).
Image: The EPFL Beta probe (Photo courtesy of EPFL).
Novel wireless probes inserted into the surgical wound identify cancer cells and suspicious lymph nodes by emitting an auditory alarm that directs the surgeon.

Developed by researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland), the Gamma and Beta probes are 20 centimeters long each and weigh around 100 grams, resembling a large pen. While the Gamma probe is an upgrade to similar devices already used, the Beta probe is a completely new device that is able to detect extremely small specimens of cancerous tissue by searching for positrons emitted by a tracer substance, which attaches to the cancer cells. Since positrons can only travel through a millimeter of tissue, when detected they pinpoint the tumor cells.

The Gamma probe does not directly detect cancer cells; instead, it finds a sentinel lymph node--the lymph node cancer cells reach before they make their way to the rest of the body--near the main tumor site. The lymph node can then be removed by the surgeons and used to stage the disease. If the sentinel lymph node is free of cancer cells, it means that the tumor has not spread. Both probes were tested at University Hospital Lausanne (CHUV; Switzerland), after earning the European CE mark in early 2015.

“The probe has a little window at one end that picks up the gamma rays or positrons given off by the substance injected into the patient,” said Edoardo Charbon, director of the Advanced Quantum Architecture Lab (AQUA) at EPFL. “A scintillator converts the energy of the rays into photons, which are then detected by a highly sensitive sensor.”

The positron is the antimatter counterpart of the electron; it has an electric charge of +1 e, a spin of ½, and has the same mass as an electron. When a low-energy positron collides with a low-energy electron, annihilation occurs, resulting in the production of two or more gamma ray photons. Positrons may be generated by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon, which is interacting with an atom in a material.

Related Links:
Ecole Polytechnique Fédérale de Lausanne
University Hospital Lausanne
Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Rectangular Top Imaging-Pain Management Table
CFPM302

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.