We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

13 Jun 2024 - 15 Jun 2024
18 Jun 2024 - 20 Jun 2024

Drug-Device Combination Could Help Treat Stroke

By HospiMedica International staff writers
Posted on 18 Nov 2015
Print article
Image: TEB combine with SA-NT therapy dissolves blood clots (Photo courtesy of Wyss Institute for Biologically Inspired Engineering).
Image: TEB combine with SA-NT therapy dissolves blood clots (Photo courtesy of Wyss Institute for Biologically Inspired Engineering).
A novel therapeutic approach combines a temporary endovascular bypass (TEB) with clot-busting nanoparticles to restore blood flow to obstructed vessels.

Developed by researchers at the Wyss Institute for Biologically Inspired Engineering (Boston, MA, USA), the New England Center for Stroke Research (NECSTR; Worcester, MA, USA) and other institutions, the drug-device combination is designed to quickly re-vascularize a vessel obstructed by a blood clot. The process involves an intra-arterial stent used to open a TEB, restoring enough blood flow to trigger a shear-activated nanotherapeutic (SA-NT) agent to dissolve the blood clot.

The SA-NT agent is composed of an aggregate of biodegradable nanoparticles coated with recombinant tissue plasminogen activator (r-tPA). As blood flow increases at the TEB location, the shear force grows, and the SA-NT agent reacts to it by releasing the r-tPA-coated nanoparticles in the partially occluded blood vessels. Hemodynamic stress causes the r-tPA to concentrate at the occlusion site, binding to the clot and dissolving it, thus providing high recanalization rates while reducing vascular injury.

After the blood clot is fully dissolved, the stent is re-sheathed and harmlessly removed from the vessel. If during the process any clot fragments break off and travel away through the circulatory system, the SA-NT drug-coated nanoparticles will remain bound to them and continue to dissolve them locally wherever they go. In clinically relevant large animal studies, the TEB/SA-NT combination worked very efficiently, dissolving clots that fully occluded brain blood vessels of the same size found in humans. The study was published on October 22, 2015, in Stroke.

“What's progressive about this approach is that the temporary opening of a tiny hole in the clot, using a stent device that is already commonly used clinically, results in a local rise in mechanical forces that activate the nanotherapeutic to deploy the clot-busting drug precisely where it can best do its job,” said senior author Donald Ingber, MD, PhD, of the Wyss Institute for Biologically Inspired Engineering.

“This has been a great collaboration between experts in the field of treating stroke and experts in mechanobiology and bioengineering,” said co-first author Netanel Korin, PhD, former Wyss Technology development fellow and current assistant professor in biomedical engineering at the Israel Institute of Technology (Technion; Haifa, Israel). “We hope that one day it will have a positive impact on patients suffering from a range of medical crises resulting from blood clot occlusions.”

Related Links:

Wyss Institute for Biologically Inspired Engineering
New England Center for Stroke Research
Israel Institute of Technology


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
12-Channel PC-Based EKG
Avante Velocity EKG

Print article

Channels

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.