We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Protein-Based Biosensors That Glow When Mixed With SARS-CoV-2 Components or Antibodies Could Enable Faster COVID-19 Testing

By HospiMedica International staff writers
Posted on 01 Feb 2021
Scientists have created a new way to detect the proteins that make up the SARS-CoV-2 virus, as well as antibodies against it by designing protein-based biosensors that glow when mixed with components of the virus or specific COVID-19 antibodies. More...


The breakthrough achieved by scientists at UW Medicine (Seattle, WA, USA) could enable faster and more widespread testing in the near future. To diagnose SARS-CoV-2 infection, most medical laboratories currently rely on a technique called RT-PCR, which amplifies genetic material from the virus so that it can be seen. This technique requires specialized staff and equipment. It also consumes lab supplies that are now in high demand all over the world.

In an effort to directly detect coronavirus in patient samples without the need for genetic amplification, a team of UW researchers used computers to design new biosensors. These protein-based devices recognize specific molecules on the surface of the virus, bind to them and then emit light through a biochemical reaction. The same team of UW researchers also created biosensors that glow when mixed with COVID-19 antibodies. They showed that these sensors do not react to other antibodies that might also be in the blood, including those that target other viruses. This sensitivity is important for avoiding false-positive test results.

“We have shown in the lab that these new sensors can readily detect virus proteins or antibodies in simulated nasal fluid or donated serum, said David Baker, professor of biochemistry and director of the Institute for Protein Design at UW Medicine, who led the study. “Our next goal is to ensure they can be used reliably in a diagnostic setting. This work illustrates the power of de novo protein design to create molecular devices from scratch with new and useful functions.”

Related Links:
UW Medicine


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
Hemostatic Agent
HEMOBLAST Bellows
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The use of NIR light beyond light therapy enables simultaneous wireless power transfer and communication to electronic IMDs (Photo courtesy of University of Oulu)

NIR Light Enables Powering and Communicating with Implantable Medical Devices

Implantable medical devices rely on wireless communication and long-lasting power sources to function safely inside the body, yet existing radio-based methods raise concerns around security, interference,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.