We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App





AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans

By HospiMedica International staff writers
Posted on 05 Apr 2022
Print article
Image: Chest CT deep learning algorithm quantifies COVID-19 lung disease (Photo courtesy of Pexels)
Image: Chest CT deep learning algorithm quantifies COVID-19 lung disease (Photo courtesy of Pexels)

A new study to evaluate the ability of a chest CT deep learning algorithm for quantification of COVID-19 lung disease found that it was highly predictive of inpatient outcomes and performed at a near expert level.

Investigators at the Medical University of South Carolina (Charleston, SC, USA) evaluated the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes associated with COVID-19 pneumonia. For the study, a previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the emergency department and received a chest CT scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes.

The study revealed that interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). The probability of each outcome behaved as a logistic function of the opacity scoring (25% ICU admission at score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). The study also found that the length of hospitalization, ICU stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, respectively). Based on these findings, the researchers concluded that the tested dCNN was highly predictive of inpatient outcomes, can perform at a near expert level, and provide added value for clinicians in terms of prognostication and disease severity.

“The use of artificial intelligence deep learning models to prognosticate from CT images has been identified from the beginning of the pandemic as a potential way to expedite the triage process, improve prognostication, and guideline utilization of resources,” explained corresponding author U. Joseph Schoepf, MD, from the Division of Cardiovascular Imaging at the Medical University of South Carolina in Charleston. “Utilizing AI severity scoring may be helpful in meeting the challenge of practical, reproducible triage of COVID-19 patients by identifying patients at high risk for morbidity and mortality.”

Related Links:
Medical University of South Carolina

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
Automated, Random Access Chemistry Analyzer
LIDA 300
New
Silver Supplier
Monkeypox Virus Real Time PCR Test
Monkeypox Virus Real Time PCR Detection Kit
New
Rapid Immunological FOB Test
Fecal Occult Blood Test

Print article
Radcal

Channels

AI

view channel
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood,... Read more

Critical Care

view channel
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)

Rapid Pathogen Capture Technology Could Accelerate Diagnosis of Bloodstream Infections and Sepsis

Bloodstream infections (BSIs) with various microbial pathogens can rapidly escalate to life-threatening sepsis when the body is overwhelmed by the multiplying invaders and shuts down its organs’ functions.... Read more

Surgical Techniques

view channel
Image: CystoSmart image enhancement and AI diagnostic tool will enhance cancer detection (Photo courtesy of Claritas HealthTech)

AI Diagnostic Tool Improves Cancer Detection in Cystoscope Images of Bladder

Bladder cancer is the 10th commonest cancer worldwide and the 6th commonest cancer amongst men. It is known to have high recurrence rates and significant risks of disease progression. Early detection of... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.