We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App





AI Model for Early Detection of SARS-CoV-2 in Children Could Pave Way for Rapid Bedside COVID-19 Diagnostic Device

By HospiMedica International staff writers
Posted on 05 Feb 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) model to aid in the early detection of severe SARS-CoV2 illness in children is expected to improve outcomes via early recognition, timely intervention and appropriate allocation of critical resources, as well as lead to the development of a rapid bedside COVID-19 diagnostic device.

To prevent children from becoming critically ill from SARS-CoV-2, a team of researchers at Wayne State University (Detroit, MI, USA) is working to define and compare the salivary molecular host response in children with varying phenotypes of SARS-CoV-2 infections and develop and validate a sensitive and specific model to predict severe SARS-CoV-2 illness in children. They are working to develop a portable, rapid device that quantifies salivary miRNAs with comparable accuracy to predicate technology (qRT-PCR). The team will develop an AI-assisted cloud and mobile system for early recognition of severe SARS-CoV-2 infection in children.

Currently, there are no methods to discern the spectrum of the disease’s severity and predict which children with SARS-CoV-2 exposure will develop severe illness, including Multisystem Inflammatory Syndrome (MIS-C). Because of this, there is an urgent need to develop a diagnostic modality to distinguish the varying phenotypes of disease and risk stratify disease. The research team aims to develop an innovative and efficient AI model with cloud and edge intelligence-integrating non-invasive biomarkers with social determinants of health and clinical data to aid with early detection of severe SARS-CoV-2 illness in children.

“Our research is critical as we expect to improve outcomes of children with severe SARS-CoV-2 infection via early recognition, timely intervention and appropriate allocation of critical resources,” said Dongxiao Zhu, Ph.D., associate professor of computer science in the College of Engineering, who is leading the study. “The successful completion of the project will also be significant, as it will lead to the development of a rapid bedside diagnostic device and creation of patient profiles based on individual risk factors which we expect to lead to personalized treatments in the future.”


Related Links:
Wayne State University

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
Direct LDL Assay
Direct LDL-C
New
Real-Time PCR System
X9

Print article
Radcal

Channels

AI

view channel
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood,... Read more

Critical Care

view channel
Image: Quantra Hemostasis Analyzer (Photo courtesy of HemoSonics)

Next-Gen POC Whole Blood Hemostasis System Recognizes Specific Needs of EDs and ORs

Current hemostatic tests provide only a subset of needed information, or take too long to be useful in critical bleeding situations, forcing clinicians to use iterative transfusion protocols that do not... Read more

Surgical Techniques

view channel
Image: CystoSmart image enhancement and AI diagnostic tool will enhance cancer detection (Photo courtesy of Claritas HealthTech)

AI Diagnostic Tool Improves Cancer Detection in Cystoscope Images of Bladder

Bladder cancer is the 10th commonest cancer worldwide and the 6th commonest cancer amongst men. It is known to have high recurrence rates and significant risks of disease progression. Early detection of... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.