We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





Mathematical Model Estimates False-Negative Rate for COVID-19 Tests

By HospiMedica International staff writers
Posted on 24 Feb 2021
Print article
Illustration
Illustration
Researchers have developed a mathematical model to estimate false-negative rate for COVID-19 tests.

The mathematical means of assessing tests’ false-negative rate develop by researchers at the Beth Israel Deaconess Medical Center (BIDMC Boston, MA, USA) allows an apples-to-apples comparison of the various assays' clinical sensitivity. As of June 2020, the U.S. Food and Drug Administration (FDA) had granted emergency use authorization for more than 85 different viral DNA test kits - or assays - each with widely varying degrees of sensitivity and unknown rates of accuracy. However, with no existing gold standard test for the novel coronavirus, there's little data on which to judge these various tests' usefulness to municipalities' efforts to safely re-open for business.

COVID test results are usually reported as simply positive or negative. However, positive individuals can harbor radically different amounts of virus, or viral load, depending on how long they've been infected or how severe their symptoms are. In fact, viral load can vary as much as a hundred million-fold among individuals. Using data from more than 27,000 tests for COVID-19 performed at Beth Israel Lahey Health hospital sites from March 26 to May 2, 2020, researchers first demonstrated that viral loads can be dependably reported. Next, the researchers estimated the clinical sensitivity and the false-negative rate first for the in-house test - which was among the first to be implemented nationwide and considered among the best in class. Analyzing repeat test results for the nearly 5,000 patients who tested positive allowed the researchers to determine that the in-house test provided a false negative in about 10% of cases, giving the assay a clinical sensitivity of about 90%.

To estimate the accuracy of other assays, the team based their calculations on each tests' limit of detection, or LoD, defined as the smallest amount of viral DNA detectable that a test will catch 95% or more of the time. The researchers demonstrated that the limit of detection can be used as a proxy to estimate a given assay's clinical sensitivity. By the team's calculations, an assay with a limit of detection of 1,000 copies viral DNA per mL is expected to detect just 75% of patients with COVID-19, providing one out of every four people with a false-negative. The team also showed that one test available today misses as many as one in three infected individuals, while another may miss up to 60% of positive cases. While not every COVID positive patient missed by sensitive PCR and antigen detection tests will be infectious to others, some will, the researchers note.

"For getting back to business as usual, we all agree we've got to massively ramp up testing to figure out who's negative and who's infectious - but that's only going to work optimally if you can catch all the positive cases," said co-corresponding author James E. Kirby, MD, Director of the Clinical Microbiology Laboratories at BIDMC. "We found that clinical sensitivities vary widely, which has clear implications for patient care, epidemiology and the social and economic management of the ongoing pandemic."
"These results are especially important as we transition from testing mostly symptomatic individuals to more regular screening across the community," said co-corresponding author Ramy Arnaout, MD, DPhil, Associate Director of the Clinical Microbiology Laboratories at BIDMC. "How many people will be missed - the false negative rate - depends on which test is used. With our model, we are better informed to ask how likely these people are to be infectious."


Related Links:
Beth Israel Deaconess Medical Center

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Bilirubin Lamp
Bilibluelight

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.