We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Comen Medical

Download Mobile App





Novel 15-Minute Microfluidic DLD Assay Could Assess Severity of Immune Response to COVID-19 Infection

By HospiMedica International staff writers
Posted on 29 Mar 2021
Print article
Image: A closeup of the microfluidic DLD assay chip with the Singapore $1 coin for scale (Photo courtesy of Singapore-MIT Alliance for Research and Technology)
Image: A closeup of the microfluidic DLD assay chip with the Singapore $1 coin for scale (Photo courtesy of Singapore-MIT Alliance for Research and Technology)
A novel deterministic lateral displacement (DLD) assay is capable of rapidly assessing host inflammatory response, allowing patients, such as those with COVID-19 infection, exhibiting life-threatening hyper-aggressive immune response to be identified and treated expeditiously, potentially making the difference between life or death.

Researchers at Singapore-MIT Alliance for Research and Technology (SMART; Singapore) have developed the new label-free immune profiling assay that profiles the rapidly changing host immune response in case of infection, in a departure from existing methods that focus on detecting the pathogens themselves, which can often be at low levels within a host. This novel technology presents a host of advantages over current methods, being both much faster, more sensitive and accurate.

In many cases, the main culprit behind disease manifestation, severity of infection, and patient mortality is an overly aggressive host immune response. This has been attributed to the now well-studied phenomenon of cytokine storms, which precipitate the rapid release of immune cells and inflammatory molecules and are brought on by a hyper-aggressive host immune response. For instance, cases of severe COVID-19 infection often result in death via sepsis and a dysregulated immune response, while current risk stratification methods based on age and comorbidity remain a significant challenge and can be inaccurate. Moreover, current COVID-19 testing does not prognose the severity of the immune response and can thus lead to inefficient deployment of resources in healthcare settings.

In cases of acute infection, the status of a patient’s immune response can often be volatile and may change within minutes. Hence, there exists a pressing need for assays that are able to rapidly and accurately inform on the state of the immune system. This is particularly vital in early triage among patients with acute infection and prediction of subsequent deterioration of disease. In turn, this will better empower medical personnel to make more accurate initial assessments and deliver the appropriate medical response. This can ensure timely intervention in the emergency department (ED) and prevent admission to the intensive care unit (ICU).

The new assay developed by SMART researchers focuses on profiling the rapidly changing host inflammatory response, which in a hyper-aggressive state, can lead to sepsis and death. A 15-minute label-free immune profiling assay from 20 µL of unprocessed blood using unconventional L and inverse-L shaped pillars of DLD microfluidic technology was developed, functioning as a sensitive and quantitative assay of immune cell biophysical signatures in relation to real-time activation levels of WBCs. As WBCs are activated by various internal or external triggers, the assay can sensitively measure both the extent and direction of these changes, which in turn reflect a patient’s current immune response state. As such, the new assay developed by SMART researchers is able to accurately and quickly assess patients’ immune response states by profiling immune cell size, deformability, distribution, and cell counts.

Significantly, the new assay provides considerable advantages over existing methods of profiling the immune system and its activity. These include measuring leukocyte gene expression, cell-surface biochemical markers, and blood serum cytokine profile. Notably, these current methods require sample dilution or pre-processing steps, as well as labor-intensive, expensive equipment and antibody labeling procedures. As a result, these methods generally require a few hours, at minimum, to return results. This is a key pain point and drawback in triage and the emergency department, where clinicians need to make accurate clinical assessments as early as possible. The labor- and time-intensive nature of these current methods significantly limits their clinical utility for rapid triage and prevents their wider implementation within the ER or ICU.

In contrast, as this new SMART assay takes only 15 minutes, uses only 20 µL of whole blood, and only requires video capture frame rates of up to 150 fps, there is considerable potential for the technology to be developed into a portable unit that can perform point-of-care blood-sparing assays which could significantly improve the diagnosis and differentiation of patients in the ER and other primary or critical care settings. This application will enable clinicians to be able to quickly identify at-risk patients and take immediate action to mitigate or prevent organ dysfunction and other adverse effects of a hyper-aggressive immune response.

“Our new DLD assay will help address an unmet need in the ER and ICU by significantly reducing waiting time for accurate patient assay results,” said lead author Dr. Kerwin Kwek. “This could lead to more effective triage decision-making and more appropriate and timely treatment, which are critical to saving lives. More generally, this groundbreaking technology provides new insights into both the engineering of precision microfluidics and clinical research.”

“In the wake of lessons learnt in emergency rooms in hospitals across the world especially during the COVID-19 pandemic, where medical professionals have been faced with making difficult and at times life-or-death decisions in triage, this new technology represents a hugely exciting and significant breakthrough,” added Professor Jongyoon Han. “By reducing the time taken for assay results from hours to a matter of minutes, SMART CAMP’s new assay could help save lives as we continue to combat the scourge of pathogens and infectious diseases. The assay will also have wider applications, giving clinicians a new and more effective tool in the ER and ICU.”

Related Links:
Singapore-MIT Alliance for Research and Technology



Print article

Channels

Business

view channel
Image: Respicardia’s remedē System (Photo courtesy of Respicardia, Inc.)

Zoll Medical Acquires CSA Systems Manufacturer Respicardia

ZOLL Medical Corporation (Chelmsford, MA, USA), an Asahi Kasei company, has acquired Respicardia, Inc. (Minnetonka, MN, USA), a provider of novel implantable neurostimulators for the treatment of moderate... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.