We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App





AI-Based Approach Could Help Develop New Protein-Based COVID-19 Antibody Therapies

By HospiMedica International staff writers
Posted on 01 Apr 2021
Print article
Illustration
Illustration
A new approach to generating synthetic proteins using artificial intelligence (AI) has huge potential for developing efficient industrial enzymes as well as new protein-based medicine, such as antibodies and vaccines for the treatment of COVID-19.

Researchers at Chalmers University of Technology (Gothenburg, Sweden) have demonstrated that AI is now capable of generating novel, functionally active proteins. Proteins are large, complex molecules that play a crucial role in all living cells, building, modifying, and breaking down other molecules naturally inside our cells. They are also widely used in industrial processes and products, and in our daily lives. Protein-based drugs are very common - the diabetes drug insulin is one of the most prescribed. Some of the most expensive and effective cancer medicines are also protein-based, as well as the antibody formulas currently being used to treat COVID-19.

Current methods used for protein engineering rely on introducing random mutations to protein sequences. However, with each additional random mutation introduced, the protein activity declines. In a breakthrough in the field of synthetic proteins, the Chalmers researchers have developed an AI-based approach called ProteinGAN, which uses a generative deep learning approach. In essence, the AI is provided with a large amount of data from well-studied proteins; it studies this data and attempts to create new proteins based on it.

At the same time, another part of the AI tries to figure out if the synthetic proteins are fake or not. The proteins are sent back and forth in the system until the AI cannot tell apart natural and synthetic proteins anymore. This method is well known for creating photos and videos of people who do not exist, but in this study, it was used for producing highly diverse protein variants with naturalistic-like physical properties that could be tested for their functions.

The proteins widely used in everyday products are not always entirely natural but are made through synthetic biology and protein engineering techniques. Using these techniques, the original protein sequences are modified in the hope of creating synthetic novel protein variants that are more efficient, stable, and tailored towards particular applications. The new AI-based approach is of importance for developing efficient industrial enzymes as well as new protein-based therapies, such as antibodies and vaccines for the treatment of COVID-19.

“What we are now able to demonstrate offers fantastic potential for a number of future applications, such as faster and more cost-efficient development of protein-based drugs,” said Aleksej Zelezniak, Associate Professor at the Department of Biology and Biological Engineering.

Related Links:
Chalmers University of Technology

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Ventilator
TRventi-3D

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.