We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.
Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Advantech Europe

Download Mobile App

NIH Clinical Center Releases CT Image Dataset

By HospiMedica International staff writers
Posted on 28 Aug 2018
Print article
Image: Lesion embedding visualized on the DeepLesion test set (Photo courtesy of NIH).
Image: Lesion embedding visualized on the DeepLesion test set (Photo courtesy of NIH).
DeepLesion, a large-scale dataset of CT images compiled by the U.S. National Institutes of Health (NIH, Bethesda, MD, USA) Clinical Center, has been made publicly available to help the scientific community improve detection accuracy of lesions. DeepLesion includes a dataset with 32,735 lesions in 32,120 CT slices from 10,594 studies of 4,427 unique anonymized patients whose CT images were sent to radiologists at the NIH Clinical Center for interpretation.

The NIH radiologists measured and marked clinically meaningful findings with the aid of a complex electronic bookmark tool that provides arrows, lines, diameters, and text that can tell the exact location and size of a lesion so experts can identify growth or new disease. The bookmarks, including a range of retrospective medical data, were used to develop the DeepLesion dataset. Unlike most lesion medical image datasets currently available, which can only detect one type of lesion, the database contains all critical radiology findings, such as lung nodules, liver tumors, enlarged lymph nodes, and so on.

The dataset released is large enough to train a deep neural network, which could enable the scientific community to create a large-scale universal lesion detector with one unified framework that could eventually serve as an initial screening tool for other specialist systems trained on certain types of lesions. In addition, DeepLesion marks multiple findings in one CT exam image, allowing researchers to analyze their relationship to make new discoveries, enabling whole body assessment of cancer burden. DeepLesion was introduced in a study published on July 20, 2018, in the Journal of Medical Imaging.

“Vast amounts of clinical annotations have been collected and stored in hospitals’ picture archiving and communication systems. These types of annotations, also known as bookmarks, are usually marked by radiologists during their daily workflow to highlight significant image findings that may serve as reference for later studies,” said senior author Ronald Summers, MD, PhD, and colleagues. “We propose to mine and harvest these abundant retrospective medical data to build a large-scale lesion image dataset.”

“In the future, the NIH Clinical Center hopes to keep improving the DeepLesion dataset by collecting more data, thus improving its detection accuracy,” stated the NIH in a press release. “The universal lesion detecting capability will become more reliable once researchers are able to leverage 3D and lesion type information. It may be possible to further extend DeepLesion to other image modalities such as MRI and combine data from multiple hospitals, as well.”

Related Links:
U.S. National Institutes of Health

Print article
Centurion Service


Copyright © 2000-2019 Globetech Media. All rights reserved.