We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Plant Cellulose Considered As Bone Implant Material

By HospiMedica International staff writers
Posted on 03 Apr 2019
Print article
Image: A new study claims nanocrystals derived from plant cellulose can form a strong but lightweight aerogel (Photo courtesy of Clare Kiernan/ UBC).
Image: A new study claims nanocrystals derived from plant cellulose can form a strong but lightweight aerogel (Photo courtesy of Clare Kiernan/ UBC).
A nanocrystal aerogel formed from plant cellulose could provide the scaffolding required for the growth of new bone, claims a new study.

Developed by researchers at the University of British Columbia (UBC; Vancouver, Canada) and McMaster University (Hamilton, ON, Canada), the biologic aerogel material is made from chemically cross-linked cellulose nanocrystals (CNC), and is designed to support osteoblast proliferation and enhance bone regeneration. The highly porous CNC aerogels also promote and support the growth of hydroxyapatite on their surface, as was demonstrated when submerged in simulated body fluid solutions.

In an in-vivo study of the CNC aerogels, which were implanted into the calvarian bone of adult male Long Evans rats, their osteconductive properties were demonstrated, and an increase in bone volume of up to 50% was shown, as compared to sham sites. And at 3- and 12-week time points, the CNC aerogels showed an increased bone volume fraction of 33% and 50%, respectively. The study was published on March 15, 2019, in Acta Biomaterialia.

“We can see this aerogel being used for a number of applications, including dental implants and spinal and joint replacement surgeries, and it will be economical because the raw material, the nanocellulose, is already being produced in commercial quantities,” said senior author biomedical engineer Professor Kathryn Grandfield, PhD, of McMaster University. “This summer, we will study the mechanisms between the bone and implant that lead to bone growth. We'll also look at how the implant degrades using advanced microscopes.”

“Most bone graft or implants are made of hard, brittle ceramic that doesn't always conform to the shape of the hole, and those gaps can lead to poor growth of the bone and implant failure,” said lead author Daniel Osorio, MSc, a PhD student in chemical engineering at McMaster University. “We created this cellulose nanocrystal aerogel as a more effective alternative to these synthetic materials.”

Cellulose is a homopolysaccharide of glucopyranose that can be either regenerated to form organized fibers or remain non-regenerated with unorganized fibers. Structurally, cellulose consists of crystalline and amorphous regions; by treating it with strong acid, the amorphous regions can be broken up to produce CNC. Cellulose is an important structural component of the primary cell wall of green plants, and is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, and of wood 40–50%.

Related Links:
University of British Columbia
McMaster University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
3D HD Video Recorder
HVO-3000MT

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.