We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Facial Recognition Continuously Monitors ICU Patients

By HospiMedica International staff writers
Posted on 12 Jun 2019
Print article
A new study evaluates an automated system that uses facial recognition technology to continuously monitor the safety of patients admitted to the intensive care unit (ICU).

Developed by researchers at Yokohama City University (Japan), the system uses ceiling-mounted cameras placed above the patients' beds. After collecting about 300 hours of daytime image data of patients facing the camera in body positions that showed their face and eyes clearly, 99 images were subject to a machine-learning (ML) algorithm to analyze them. Based on input from the observational data, especially from around the subject's face, the ML algorithm learned to identify potential high-risk behavior in a process that resembles the way a human brain learns new information.

In a proof of concept study that included 24 postoperative patients (average 67 years of age) who were admitted to the ICU in Yokohama City University Hospital between June and October 2018, the ML algorithm was able to identify high risk unsafe behavior--such as accidentally removing their breathing tube--with 75% accuracy. They also suggested that monitoring consciousness may improve accuracy by helping to distinguish between high-risk behavior and voluntary movement. The study was presented at the Euroanaesthesia annual congress, held during June 2019 in Vienna (Austria).

“Using images we had taken of a patient's face and eyes we were able to train computer systems to recognize high-risk arm movement,” said lead author and study presenter Akane Sato, MD. “We were surprised about the high degree of accuracy that we achieved, which shows that this new technology has the potential to be a useful tool for improving patient safety, and is the first step for a smart ICU which is planned in our hospital.”

Facial recognition systems use biometrics to map facial features from a photograph or a video. The geometry of the face is then analyzed, with key factors including interpapillary distance and the distance from forehead to chin. In all, there are over 65 quantifiable features that can be used to identify a face, generating a unique facial signature.

Related Links:
Yokohama City University

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Open Reanimation System
BabyGuard W-1140
New
Vital Signs Monitor
iM3
New
Needle Guidance System
Verza Needle Guidance System

Print article
Radcal

Channels

Critical Care

view channel
Image: An earbud prototype that has been wired for data collection (Photo courtesy of MUSC)

Earbuds to Outperform Smartwatches in Monitoring Blood Pressure

While blood pressure cuffs are considered the most accurate method of measurement, they require the user to sit down, put on the cuff, and stay still. This can be inconvenient and may lead to errors in... Read more

Surgical Techniques

view channel
Image: New robust thermosensitive bioadhesives can improve surgical sealing (Photo courtesy of Pexels)

New Surgical Sealing Biomaterial Could Eliminate Standard Methods of Suturing and Stapling

For surgical wounds to be properly closed, the sealant material used must effectively seal on wet, slippery tissue surfaces that vary in shape and may involve tissue movement, such as an expanding lung,... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.