We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
09 Dec 2022 - 11 Dec 2022

Facial Recognition Continuously Monitors ICU Patients

By HospiMedica International staff writers
Posted on 12 Jun 2019
Print article
A new study evaluates an automated system that uses facial recognition technology to continuously monitor the safety of patients admitted to the intensive care unit (ICU).

Developed by researchers at Yokohama City University (Japan), the system uses ceiling-mounted cameras placed above the patients' beds. After collecting about 300 hours of daytime image data of patients facing the camera in body positions that showed their face and eyes clearly, 99 images were subject to a machine-learning (ML) algorithm to analyze them. Based on input from the observational data, especially from around the subject's face, the ML algorithm learned to identify potential high-risk behavior in a process that resembles the way a human brain learns new information.

In a proof of concept study that included 24 postoperative patients (average 67 years of age) who were admitted to the ICU in Yokohama City University Hospital between June and October 2018, the ML algorithm was able to identify high risk unsafe behavior--such as accidentally removing their breathing tube--with 75% accuracy. They also suggested that monitoring consciousness may improve accuracy by helping to distinguish between high-risk behavior and voluntary movement. The study was presented at the Euroanaesthesia annual congress, held during June 2019 in Vienna (Austria).

“Using images we had taken of a patient's face and eyes we were able to train computer systems to recognize high-risk arm movement,” said lead author and study presenter Akane Sato, MD. “We were surprised about the high degree of accuracy that we achieved, which shows that this new technology has the potential to be a useful tool for improving patient safety, and is the first step for a smart ICU which is planned in our hospital.”

Facial recognition systems use biometrics to map facial features from a photograph or a video. The geometry of the face is then analyzed, with key factors including interpapillary distance and the distance from forehead to chin. In all, there are over 65 quantifiable features that can be used to identify a face, generating a unique facial signature.

Related Links:
Yokohama City University

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
Real-Time PCR System
Applied Biosystems QuantStudio 7 Pro Dx
New
Microtome
M-250
New
Automated Clinical Chemistry Analyzer
DRI-CHEM NX600

Print article
Radcal

Channels

AI

view channel
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood,... Read more

Critical Care

view channel
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)

Rapid Pathogen Capture Technology Could Accelerate Diagnosis of Bloodstream Infections and Sepsis

Bloodstream infections (BSIs) with various microbial pathogens can rapidly escalate to life-threatening sepsis when the body is overwhelmed by the multiplying invaders and shuts down its organs’ functions.... Read more

Surgical Techniques

view channel
Image: CystoSmart image enhancement and AI diagnostic tool will enhance cancer detection (Photo courtesy of Claritas HealthTech)

AI Diagnostic Tool Improves Cancer Detection in Cystoscope Images of Bladder

Bladder cancer is the 10th commonest cancer worldwide and the 6th commonest cancer amongst men. It is known to have high recurrence rates and significant risks of disease progression. Early detection of... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.