We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Nanodrone Detects Toxic Gases in Hazardous Environments

By HospiMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: Javier Burgués (L) and Santiago Marco (R), of UB and IBEC, and the nanodrone (Photo courtesy of IBEC).
Image: Javier Burgués (L) and Santiago Marco (R), of UB and IBEC, and the nanodrone (Photo courtesy of IBEC).
A new study describes an innovative smelling nano aerial vehicle (SNAV) that can detect dangerous compounds in buildings that have collapsed due to earthquakes or explosions.

Developed at the University of Barcelona (UB, Spain), the Institute for Bioengineering of Catalonia (IBEC; Barcelona, Spain) and Örebro University (ORU; Sweden), the SNAV nanodrone weighs just thirty-five grams, including two nanometric metal oxide semiconductor (MOX) gas sensors that can respond to carbon monoxide (CO), methane (CH4), and other organic volatile compounds such as ethanol, acetone and benzene, with a detection threshold on the order of one part per million in volume (PPMV), according to the gas and the sensor used.

Due to its small form-factor, the SNAV is not hazardous to humans, thus enabling its use both in public areas and inside buildings, autonomously carrying out missions in hazardous environments inaccessible to terrestrial robots and bigger drones. To guide the SNAV, six radiofrequency transceivers, located in known positions, are used, which together with a transceiver in the nanodrone itself allows operators to fly it to a desired position using the built-in accelometers and gyroscopes.

As a result, the SNAV is able to work in interior spaces, crossing holes and cracks, as well as in large areas--about 160 square meters--if the chemical emission source is hidden in areas which are hard to access, such as false ceilings, air duct systems, etc. In experiments conducted at ORU, the researchers were able to build a 3D map of the gas distribution and identify the most likely source location in less than three minutes, with a 1.38-2.05 meter accuracy. The study was published in the March 2019 issue of Sensors.

“Terrestrial robots used to focus the searching on the field of chemical signaling-based localization. Today, the option of using nanodrones broadens the ability and quickness of the robots to move within an interior space and overcome obstacles such as stairs,” said senior author Santiago Marco, PhD, head of the intelligent signaling for sensor systems in bioengineering research group at UB-IBEC. “Another line we want to work on is the merge of data from multiple gas sensors to increase selectivity towards certain compounds of interest.”

Related Links:
University of Barcelona
Institute for Bioengineering of Catalonia
Örebro University

Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Breathing Set
HAMILTON-BC8010
New
Surgical Instruments
Laparoscopic Bariatric Surgery Instrument Set
New
Gold Supplier
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE

Print article
Radcal

Channels

Critical Care

view channel
Image: An earbud prototype that has been wired for data collection (Photo courtesy of MUSC)

Earbuds to Outperform Smartwatches in Monitoring Blood Pressure

While blood pressure cuffs are considered the most accurate method of measurement, they require the user to sit down, put on the cuff, and stay still. This can be inconvenient and may lead to errors in... Read more

Surgical Techniques

view channel
Image: New robust thermosensitive bioadhesives can improve surgical sealing (Photo courtesy of Pexels)

New Surgical Sealing Biomaterial Could Eliminate Standard Methods of Suturing and Stapling

For surgical wounds to be properly closed, the sealant material used must effectively seal on wet, slippery tissue surfaces that vary in shape and may involve tissue movement, such as an expanding lung,... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.