We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
09 Dec 2022 - 11 Dec 2022

AI Tool Combines Lung Screening CT with Clinical Data to Predict Lung Cancer without Radiologist Assistance

By HospiMedica International staff writers
Posted on 28 Oct 2021
Print article
Illustration
Illustration

A new artificial intelligence (AI)-based model that combines lung screening computed tomography (CT) information with clinical data has been shown to better predict lung cancer without the need for manual reading.

The deep learning tool built by scientists at the Vanderbilt University (Nashville, TN, USA) integrates CT features such as nodule size and risk factors including age, pack-years smoked, cancer history, among others. The scientists developed and tested the co-learning model on exams of more than 23,000 patients and found that it outperformed risk models utilizing clinical or imaging data alone, including the popular Brock model.

The scientists developed the deep learning tool by applying a five-fold cross-validation approach to data of 23,505 patients from the National Lung Screening Trial. The team used screening data from close to 150 patients in an in-house program for external testing. The scientists found that the deep learning tool notched an area under the receiver operating characteristic curve score of 0.88, which was higher than published models dependent completely on imaging data (0.86) and clinical risk factors (0.69).

More importantly, the deep learning tool automatically pulls high-risk regions from CT exams without the need for any effort by the radiologist. However, gathering clinical data does involve manual effort from radiologists and physicians. The scientists believe that their co-learning approach could be particularly beneficial as more patients start to qualify for screening exams and the insights from the tool could find low-risk individuals to be actually high-risk.

“Risk estimation among lung screening participants will become even more important with the impending expansion of screening guidelines to include those patients who are considered lower risk only based on age and history of tobacco use,” stated Riqiang Gao, a PhD student in computer science at Vanderbilt University. “The role of [the] radiologist is still irreplaceable in terms of looking for and reporting clinically significant findings (emphysema, pulmonary fibrosis, atelectasis, etc.).”

Related Links:
Vanderbilt University 

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
Urine Test Strip
HealthMate DA-7
New
Fecal Occult Blood Test
iFOB Assay

Print article
Radcal

Channels

AI

view channel
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood,... Read more

Critical Care

view channel
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)

Rapid Pathogen Capture Technology Could Accelerate Diagnosis of Bloodstream Infections and Sepsis

Bloodstream infections (BSIs) with various microbial pathogens can rapidly escalate to life-threatening sepsis when the body is overwhelmed by the multiplying invaders and shuts down its organs’ functions.... Read more

Surgical Techniques

view channel
Image: CystoSmart image enhancement and AI diagnostic tool will enhance cancer detection (Photo courtesy of Claritas HealthTech)

AI Diagnostic Tool Improves Cancer Detection in Cystoscope Images of Bladder

Bladder cancer is the 10th commonest cancer worldwide and the 6th commonest cancer amongst men. It is known to have high recurrence rates and significant risks of disease progression. Early detection of... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.