We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI-Enhanced ECGs Can Improve Diagnosis and Treatment of Obstructive Hypertrophic Cardiomyopathy

By HospiMedica International staff writers
Posted on 09 Mar 2022
Print article
Image: AI-ECG can identify early hypertrophic cardiomyopathy (Photo courtesy of UCSF)
Image: AI-ECG can identify early hypertrophic cardiomyopathy (Photo courtesy of UCSF)

Using artificial intelligence (AI) in electrocardiogram (ECG) analysis can improve diagnosis and treatment of hypertrophic cardiomyopathy (HCM), according to findings of a new study pointing to the potential benefits for remote monitoring of the condition.

The study by researchers at the University of California San Francisco (UCSF, San Francisco, CA, USA) found that AI-ECG may help identify HCM in its earliest stages and monitor important disease-related changes over time. The team demonstrated that AI analysis of ECGs can not only accurately predict the diagnosis of HCM, but also that AI-ECG correlates longitudinally with cardiac pressures and lab measurements related to HCM. The study showed that AI analysis can capture far more information from ECGs related to obstructive HCM pathophysiology than is currently gained by manual ECG interpretation and was the first study to show that AI analysis of ECGs can potentially be used to monitor disease-related physiologic and hemodynamic measurements.

The researchers applied two separate AI-ECG algorithms to pre-treatment and on-treatment ECGs from the phase-2 PIONEER- OLE clinical trial (a clinical trial for treatment with the HCM drug Mavacamten in adults with symptomatic obstructive HCM). After showing that both algorithms accurately detected HCM in clinical trial data without additional training, they then showed that AI-ECG HCM scores correlated longitudinally with disease status as measured by decreases over time in left ventricular outflow tract gradients and natriuretic peptide (NT-proBNP) levels in these patients.

The longitudinal associations of the AI-ECG HCM score were significant and likely reflected changes in the raw ECG waveform that were detectable by AI-ECGs and correlated with HCM disease pathophysiology and severity. AI-ECG’s potential is broadened by the fact that ECGs can now be measured remotely via smartphone-enabled electrodes and may permit remote assessment of disease progression as well as drug treatment response. According to the researchers, future studies are needed to determine whether AI-ECGs can track disease status and be used as a guide for drug measurement to enhance safety.

Related Links:
University of California San Francisco 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Autoclavable Camera System
Precision AC

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.