Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Triggered Imaging Technology Continually Monitors Tumor Location During Radiosurgical Procedures

By HospiMedica International staff writers
Posted on 07 Dec 2011
A US university health system has become the first medical center in the world to utilize intrafraction motion review (IMR), or “triggered imaging,” to continually monitor tumor location during radiosurgery for lung cancer. More...


IMR, which is a unique capability of the TrueBeam linear accelerator from Varian Medical Systems (Palo Alto, CA, USA) enables visual verification that a tumor is being properly targeted. “With triggered imaging, clinicians use the imager on the TrueBeam system to observe the targeted tumor repeatedly, at a predetermined portion of the respiratory cycle, in order to check on the tumor’s location and trajectory,” said Chris Toth, senior director of marketing at Varian. “If the tumor is not where it is supposed to be, they can halt treatment and intervene to enhance the accuracy of the targeting.”

Physicians from the University of Alabama at Birmingham (UAB) Health System (USA) used the IMR tool for the first time earlier in November 2011 when delivering a gated RapidArc radiosurgery treatment for inoperable early-stage lung cancer. RapidArc enables fast, precise image-guided intensity-modulated radiotherapy (IMRT) by delivering dose continuously as the treatment machine rotates around the patient. Gated RapidArc makes it possible to monitor patient breathing and compensate for tumor motion during a RapidArc treatment. The gating system turns the treatment beam on and off in synchrony with the patient’s breathing to increase treatment precision. With IMR, or triggered imaging, the gating system also triggers the imager to generate a low-dose X-ray of the targeted tumor at a specific point in the patient’s respiratory cycle.

“With IMR, we can now monitor the gating accuracy and ensure that the beam hits the tumor,” said Richard Popple, PhD, associate professor of medical physics at UAB. “It will allow us to monitor tumor position in real time and intervene if a change in patient respiratory pattern causes a shift. The increased precision could potentially increase tumor control and decrease the amount of surrounding healthy lung tissues exposed to the beam.”

“The IMR tool offers us a way of verifying that our gating strategy remains valid throughout an entire treatment,” added Chris Dobelbower, MD, PhD, radiation oncologist at UAB. “It also gives us the ability to hold the beam should the target wander from isocenter if the patient’s breathing pattern were to change due to a cough or a sneeze, or other interference. Those events did not happen with our first patient, so no treatment interruptions were necessary.”

To utilize IMR during the treatment for lung cancer, Dr. Dobelbower collaborated with thoracic surgeon Douglas J. Minnich, MD, assistant professor at UAB Healthcare, who positioned a set of radio-opaque fiducial markers into the lung tumor using electromagnetic navigational bronchoscopy--an approach that employs three-dimensional CT imaging to guide the procedure. These markers made it possible to see the tumor’s location within the surrounding healthy tissues using X-ray images generated during treatment.

“IMR makes it possible to complete lung cancer treatments with a high level of precision and confidence that you’re treating the area you want to treat,” Dr. Minnich said. “Rather than imaging at the beginning of treatment and then doing your best to account for respiratory motion, IMR allows you to actually watch the tumor and monitor your targeting as the treatment proceeds.”

According to Dr. Dobelbower, the ability to capture an image with every breath, identify when a targeted tumor has shifted, halt a treatment, and reposition the patient makes a new level of precision feasible. “This was previously only possible by a time-consuming and cumbersome process of interrupting treatment for additional imaging,” he said.

Related Links:
Varian Medical Systems
University of Alabama at Birmingham Health System



Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
IV Therapy Cart
Avalo I.V Therapy Cart
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.