Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nonlinear Acoustic Analysis Could Help Destroy Kidney Stones

By HospiMedica International staff writers
Posted on 04 Mar 2015
Mathematical analysis and simulation of models governing the propagation of sound in fluids could enhance lithotripsy, according to a new study.

Researchers at Alpen-Adria-Universität (Klagenfurt am Wörthersee, Austria) are developing an application-oriented comprehensive mathematical analysis of the underlying model equations the propagation of sound in fluids, since n-depth numerical simulation and optimization could result in a better understanding and control of the physical effects and complication risks during medical applications. More...
As such, the mathematical analysis of the underlying partial differential equation (PDE) models of high intensity focused ultrasound (HIFU) is crucial for proper design of devices, such as in lithotripsy.

For example, optimization methods can be used to design the three dimensional (3-D) geometrical shape an acoustic lens so that the acoustic pressure generated is focused directly onto a kidney stone, while the surrounding tissue remains intact. Another issue the researchers plan to investigate is the coupling of nonlinear acoustics to other physical fields, such as excitation mechanisms, focusing devices, heat generation, and interaction with the kidney stones. The project is supported by the Austrian Science Fund (FWF; Vienna, Austria).

“These models are based on partial differential equations. The better our grasp of these equations, the more successfully one can avoid complications during the application of ultrasound technology,” said lead author Rainer Brunnhuber, MSc, of the department of mathematics. “To give an example, mathematical optimization methods can be used to enhance the shape of an acoustic lens in such a way that the acoustic pressure is focused precisely on the location of the kidney stone, and the surrounding tissue retains as little damage as possible.”

Nonlinear acoustics deal with large amplitude sound waves that require using comprehensive governing equations of fluid dynamics (for sound waves in liquids and gases) and elasticity (for sound waves in solids). The effects of nonlinearity cause sound waves to become distorted as they travel through a material, but geometric spreading and absorption effects usually overcome the self-distortion, so linear behavior usually prevails. Nonlinear acoustic propagation therefore occurs only for very large amplitudes and only near the source.

Related Links:

Alpen-Adria-Universität
Austrian Science Fund



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
Ultrasound Needle Guidance System
SonoSite L25
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.