We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Printed Nerve Guides Aid Peripheral Nerve Repair

By HospiMedica International staff writers
Posted on 08 Mar 2015
A novel method for manufacturing nerve guidance conduits (NGCs) could imporve neural repair following peripheral nerve damage, according to a new study. More...


Researchers at the University of Sheffield (United Kingdom) developed a new method for fabricating three dimensional (3D) printed NGCs using customizable computer aided design (CAD) design and photocurable poly(ethylene glycol) resin as the substrate material. A custom built, laser direct writing microstereolithography (μSL) system that incorporated a 405 nm laser source was used to produce the 3D NGC constructs, with ∼50 μm resolution.

The researchers used the μSL system to fabricate 5-mm long NGCs with an internal diameter of 1 mm, and a wall thickness of 250 μm. They then evaluated the NGCs in an vitro mouse model, microscopically examining neuronal, Schwann, and dorsal root ganglion cultures. An in vivo fibular nerve injury model was also implemented to study repair. The researchers found that the NGC guides enabled nerve repair across an injury gap of 3 mm over 21 days. The study was published online on February 14, 2015, in Biomaterials.

“The advantages of these 3D printed NGCs over previous conventional guidance channels are that 3D printing enables adaptation on a case-by-case basis and regeneration is comparable to that seen with grafts,” concluded lead author graduate student Christopher Pateman, MSc, and colleagues. The team is also testing the ability of the NGCs to restore nerve function over larger gaps, as well as the use of biodegradable raw materials.

NGCs are designed not only to act as a guide for the regenerating nerve end, but also to modulate the internal environment and to promote host regeneration. While commercially available devices show similar efficacy to autograft surgery for short injury gap repair, their efficacy for gaps beyond 20 mm is limited, since they are fabricated as a simple tube. Using μSL—an additive technique—offers the ability to produce scaffolds and devices containing intricate microstructures using resin pre-polymers under CAD control.

Related Links:

University of Sheffield



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Radiation Safety Barrier
RayShield Intensi-Barrier
Half Apron
Demi
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.