Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Fluorescent Imaging Expands Capabilities of Ingested Video-Pills

By HospiMedica International staff writers
Posted on 06 Jan 2016
An innovative miniaturized wireless endoscope video capsule that utilizes fluorescence imaging (FI) could improve detection of cancer in the throat and digestive system.

Developed by researchers at the University of Glasgow (United Kingdom), the new video endoscopy pill exploits a phenomenon where certain molecules emit light when they are illuminated by specific wavelengths outside the visible spectrum. More...
But while current diagnostic FI devices are expensive, bulky, and consume substantial power, the miniaturized wireless FI version has low power consumption, thanks to a state-of-the-art complementary single photon avalanche detector (SPAD) imaging array, miniaturized optical isolation, and wireless technology.

The crucial component of the video-pill design is the SPAD array, which generates a pulse of current every time it is hit by a photon of the emitted fluorescent light, generated when a simple LED light illuminates the suspected tumor in the 468 nm band. According to the researchers, the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labeling. The system is also small enough and power-efficient enough to image the entire human gastrointestinal (GI) tract for up to 14 hours.

To demonstrate the performance of the capsule, the researchers imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (hemoglobin), which mimic how cancers are affected by fluorescence in the intestines, the bowel, and the esophagus. They also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labeling solution on mammalian tissue. The study describing the FI capsule and the validation process was published on December 18, 2015, in Nature Scientific Reports.

“It’s a valuable new technique which could help clinicians make fewer false positives and negatives in cancer diagnosis, which could lead to more effective treatment in the future,” said lead author electrical engineer Mohammed Al-Rawhani, PhD. “The system could also be used to help track antibodies used to label cancer in the human body, creating a new way to detect cancer.”

“We’ve played an important role in developing the technology behind video-pill systems, and this is an exciting new development, which offers a valuable new resource for gastrointestinal imaging,” added senior author Prof. David Cumming, PhD, chair of the department of electronic systems. “There’s still some way to go before it will be ready for commercial production and clinical use, but we’re in early talks with industry to bring a product to market.”

Related Links:

University of Glasgow



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.