Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Near-Infrared Dye Could Highlight Cancer Locations

By HospiMedica International staff writers
Posted on 10 Jan 2016
A novel medical dye emits light at the near-infrared (NIR) wavelength, helping surgeons detect hard-to-find tumors. More...


Under development by researchers at Stanford University (CA, USA), the small-molecule fluorophore dye emits light in a portion of the NIR range known as the second window, or NIR-II. Dyes emitting light in that range have long wavelengths, allowing researchers to probe tissues at centimeter depths, as well as achieve micrometer-scale resolution at millimeter depth. But while all currently approved NIR-II fluorophores are excreted slowly from the reticuloendothelial system, the new dye is rapidly eliminated, with about 90% excreted through the kidneys within 24 hours.

In laboratory tests in mice, the fluorophore, which is based on CH1055 (a synthetic 970-Da organic molecule), outperformed indocyanine green in resolving lymphatic vasculature and sentinel lymphatic mapping near a tumor. High levels of uptake of were observed in brain tumors in the mice, suggesting that the dye could be detected at a depth of about four mm. The dye succeeded in resolving blood vessels in the forelimb as well as the peripheral brain with high clarity, but also provided clear resolution of tumors in the center of the mouse's brain.

The CH1055 dye also allows targeted molecular imaging of tumors in vivo when conjugated with an antibody. According to the researchers, this could in the future prove to be an invaluable surgical tool, since the dye provides a superior tumor-to-background signal ratio, and thus could allow precise image-guided real-time excision surgery. The study describing the NIR-II fluorophore and the mouse experiments was published on November 23, 2015, in Nature Materials.

“The difficulty is how to make a dye that is both fluorescent in the infrared and water soluble. A lot of dyes can glow but are not dissolvable in water, so we can't have them flowing in human blood. Making a dye that is both is really the difficulty,” said lead author graduate student Alex Antaris, MSc. “We struggled for about three years or so and finally we succeeded. What's more, the new dye produces images that are sharper and more detailed than before, increasing their potential value to medicine and surgery.”

Related Links:

Stanford University



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ureteral Dilatation Balloon
Dornier Equinox
Emergency Ventilator
Shangrila935
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.