We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Injectable Hydrogel Electrodes Could Prevent Ventricular Arrhythmias

By HospiMedica International staff writers
Posted on 09 May 2023
Print article
Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)
Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)

Ventricular arrhythmias are dangerous heart rhythm disorders that originate in the heart's lower chambers and can be caused by delayed conduction in scarred or diseased heart tissue, such as that resulting from a heart attack. Researchers are now developing conductive, injectable hydrogel electrodes to prevent and manage these arrhythmias and reduce the risk of sudden cardiac death.

An interdisciplinary research team from The Texas Heart Institute (Houston, TX, USA) and The University of Texas at Austin (Austin, TX, USA) is building on the initial proof-of-concept of pacing heart muscle using a hydrogel that solidifies within the body. They aim to create a combined material and delivery system that interfaces with existing pacemaker technology, enhancing its ability to treat ventricular arrhythmias. The researchers will closely collaborate to evaluate the injectable hydrogel's safety, functionality, and durability through benchtop testing and in a porcine model. They will also develop a transcutaneous catheter delivery system for the innovative hydrogel.

The team has already demonstrated the feasibility of pacing the heart using the hydrogel in a porcine model. By assessing its use in a myocardial infarction porcine model, they will investigate whether the hydrogel can restore conduction across scars, reducing ventricular arrhythmias and implantable cardioverter defibrillator shocks. If successful, this approach could effectively eliminate conduction delays in scarred heart tissue, which lead to lethal ventricular arrhythmias. A four-year, USD 2.37 million grant from the National Heart, Lung, and Blood Institute will support the researchers in conducting studies using a post-myocardial infarction model to demonstrate the hydrogel electrode pacing's potential to decrease the occurrence of ventricular arrhythmias and defibrillation shocks.

“We identified an unmet need to deliver electrical signals across these problematic scars in the heart, and unfortunately the leads that are currently available can only be threaded through larger vessels,” said electrophysiology medical device pioneer and clinician Dr. Mehdi Razavi, Director of Electrophysiology Clinical Research & Innovations at The Institute. “We envisioned using hydrogels injected into the small vessels that cross over scarred regions of the heart to propagate electrical currents and more effectively pace the heart.”

“Stimulating vast areas of the heart through planar wavefront propagation could introduce an entirely new cardiac resynchronization therapy, and ultimately alter the landscape of cardiac rhythm management through a new platform for painless ventricular defibrillation,” added Dr. Razavi.

 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
3 Channel ECG Machine
ECG-703

Print article

Channels

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.