We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Surgical Scaffold Contours to Human Body

By HospiMedica International staff writers
Posted on 18 Apr 2017
Print article
Image: The GalaSHAPE 3D surgical scaffold comes in a range of shapes and sizes (Photo courtesy of Galatea Surgical).
Image: The GalaSHAPE 3D surgical scaffold comes in a range of shapes and sizes (Photo courtesy of Galatea Surgical).
An innovative three-dimensional (3D) scaffold for plastic and reconstructive surgery supports, elevates, repairs, and reinforces soft tissue.

The Galatea Surgical GalaSHAPE 3D Surgical Scaffold is a bioresorbable scaffold designed to assist surgeons in addressing a range of tissue deficiencies, voids or weakness that require additional materials to obtain desired surgical outcomes. This includes, among others objectives, the reinforcement of soft tissues in plastic and reconstructive surgery and general soft tissue reconstruction. The GalaSHAPE 3D scaffold is also indicated for the repair of fascial defects that require the addition of a reinforcing or bridging material.

The mesh is comprised of monofilament fibers extruded from poly-4-hydroxybutyrate (P4HB), a biologically derived polymer that resorbs in the body with very low inflammation due to its low acidity, relative to most other resorbable polymers. After implantation, the P4HB mesh remodels as functional new tissue with added thickness and strength, achieving after 18-24 months (when the scaffold is fully resorbed) a form 3-5 times stronger than native tissue.

“The ability of the GalaSHAPE 3D scaffold to conform to the variable anatomic contours encountered in aesthetic plastic surgery is a major advance compared to currently available synthetic and biologic meshes,” said plastic surgeon Bruce Van Natta, MD, of Indianapolis (IN, USA). “The combination of P4HB's strength, bioresorption, and ability to enable rapid tissue ingrowth and integration will help plastic surgeons achieve exceptional aesthetic results for their patients.”

P4HB is produced through a proprietary biologic fermentation process, rather than chemical synthesis. After it is isolated and purified, it can be extruded into monofilament fibers and used directly as suture, or knitted into an open scaffold construction that enables rapid tissue in-growth and low bacterial adherence.

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Compact C-Arm
Arcovis DRF-C S21

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.