We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Groundbreaking Technology Paves Way for Permanent Implantable Medical Devices

By HospiMedica International staff writers
Posted on 04 Jan 2024
Print article
Image: Implantable medical device utilizing electrostatic materials with high dielectric properties for ultrasound energy transmission (Photo courtesy of POSTECH)
Image: Implantable medical device utilizing electrostatic materials with high dielectric properties for ultrasound energy transmission (Photo courtesy of POSTECH)

Innovations in medical technology through the blending of science and medicine have significantly enhanced patient care. Notably, the advent of implantable electronic devices, such as those used in the heart or brain, marks a major advancement, offering real-time monitoring and regulation of physiological signals. These developments present groundbreaking solutions for complex conditions like Parkinson’s disease. However, the durability of these devices remains a challenge. Typically, patients with implanted devices must undergo frequent surgeries to replace batteries, a process fraught with risks and burdens, both financial and physical. Current research is delving into implantable medical devices that function wirelessly, but the search for a safe and efficient energy source and compatible materials continues. Titanium (Ti) is commonly used for its biocompatibility and strength, but its inability to transmit radio waves requires an additional antenna for wireless power, increasing the device's size and discomfort for the patient.

In a groundbreaking development, a research team from Pohang University of Science and Technology (POSTECH, Gyeongbuk, Korea) has engineered electrostatic materials sensitive to even faint ultrasound signals, paving the way for permanently implantable electronic devices in biomedicine. The team chose ultrasound over radio waves due to its established safety record in medical diagnostics and treatments. They developed an electrostatic material that responds to weak ultrasound by combining high dielectric polymers (P(VDF-TrFE)) with calcium copper titanate (CCTO, CaCu3Ti4O12), a ceramic with a high dielectric constant. This material produces static electricity through interlayer friction, generating efficient electrical energy with exceptionally low output impedance, ensuring efficient electricity transmission.

The research team employed this innovative technology to develop an implantable neurological stimulator powered by ultrasound-based energy transmission, eliminating the need for batteries. This was substantiated through rigorous experimental validation. In trials using animal models, the device functioned at standard imaging ultrasound levels (500 mW/cm2) that place minimal strain on the human body. Additionally, it successfully alleviated symptoms associated with overactive bladder disorders by stimulating nerves, showcasing its potential to transform patient care with its cutting-edge, battery-free design.

“We have addressed the challenges in the field of implantable medical devices using ultrasound-based energy transmission technology that is harmless to the human body,” said Professor Sung-Min Park from POSTECH. “This research serves as a case of introducing advanced material technology into medical devices, and we anticipate that it will promote the emergence of a next-generation medical industry, including the treatment of intractable diseases using implantable devices.”

Related Links:
POSTECH

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Illuminated Retractor System
HandLite

Print article

Channels

Critical Care

view channel
Image: AI can be as good as a physician at prioritizing which patients need to be seen first (Photo courtesy of 123RF)

AI Can Prioritize Emergecny Department Patients Requiring Urgent Treatment

Emergency departments across the world are facing severe overcrowding and excessive demands, but a new study indicates that artificial intelligence (AI) might soon assist in prioritizing patients who require... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.