We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




AI Algorithm Integrates Cardiac Troponin Test Results with Clinical Data to Quickly Rule out Heart Attacks in Patients

By HospiMedica International staff writers
Posted on 12 May 2023
Print article
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)
Image: The AI tool can also tackle dangerous inequalities in heart attack diagnosis (Photo courtesy of Freepik)

The accepted standard for diagnosing myocardial infarction, or heart attack, involves assessing the blood for troponin levels. However, this approach applies the same benchmark for all patients, failing to take into account variables like age, gender, and pre-existing health conditions which can influence troponin levels, thereby potentially compromising the accuracy of diagnosis and leading to disparities. Now, an artificial intelligence (AI)-based algorithm offers a speedy way to exclude heart attack possibilities in patients and assists clinicians in discerning if irregular troponin levels are the result of a heart attack or a different condition. The AI tool functions efficiently regardless of the patient's age, gender, or other health conditions, demonstrating its potential in mitigating diagnostic inaccuracies and disparities across various demographics.

The AI algorithm, termed CoDE-ACS, was created utilizing data from 10,038 patients in Scotland who presented to the hospital with suspected heart attack symptoms. The algorithm uses routinely gathered patient data, such as age, gender, ECG results, medical history, and troponin levels, to estimate the likelihood of a patient having experienced a heart attack. The outcome is a probability score ranging from 0 to 100 for each patient. CoDE-ACS could potentially enhance the efficiency and effectiveness of emergency care by swiftly identifying patients who can safely be discharged, while simultaneously flagging those who require further hospital testing.

Researchers from the University of Edinburgh (Scotland, UK) evaluated the efficacy of the algorithm, termed CoDE-ACS, on 10,286 patients across six nations. Their findings revealed that CoDE-ACS was able to exclude the possibility of heart attacks in over twice the number of patients compared to traditional testing methods, with a remarkable accuracy rate of 99.6%. This capability of ruling out heart attacks more swiftly could substantially decrease hospital admissions. In addition to promptly excluding heart attack possibilities, CoDE-ACS could also support clinicians in identifying patients whose abnormal troponin levels are attributable to a heart attack rather than a different medical condition.

“For patients with acute chest pain due to a heart attack, early diagnosis and treatment saves lives,” said Professor Nicholas Mills, BHF Professor of Cardiology at the Centre for Cardiovascular Science, University of Edinburgh, who led the research. “Unfortunately, many conditions cause these common symptoms, and the diagnosis is not always straight forward. Harnessing data and artificial intelligence to support clinical decisions has enormous potential to improve care for patients and efficiency in our busy Emergency Departments.”

Related Links:
University of Edinburgh 

New
Gold Supplier
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
New
Lesion Tracking Application
Sectra Lesion Tracking
New
Endoscopic Irrigation Pump
WATERFALL
New
Hydraulic Surgeon's Chair/Stool
SC100

Print article
FIME - Informa

Channels

Critical Care

view channel
Image: New technology gives patients the power to heal chronic wounds using their own blood (Photo courtesy of RedDress)

POC Solution Creates In Vitro Blood Clots from Patient’s Own Whole Blood in Real-Time to Treat Post-Surgical Wounds

Blood clots are a natural mechanism of the body's healing process. However, for chronic wounds resulting from diabetes and other conditions, blood is unable to reach these areas, hampering the initiation... Read more

Surgical Techniques

view channel
Image: The deployable electrodes are ideal for minimally invasive craniosurgery (Photo courtesy of EPFL)

Soft Robotic Electrode Offers Minimally Invasive Solution for Craniosurgery

Minimally invasive medical procedures offer numerous benefits to patients, including decreased tissue damage and shorter recovery periods. However, creating equipment that can pass through a small opening... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: IntelliSep is the first FDA-cleared diagnostic tool to assess cellular host response to aid in identifying ED patients with sepsis (Photo courtesy of Cytovale)

Rapid Microfluidic Test Demonstrates Efficacy as Diagnostic Aid to Improve Sepsis Triage in ED

Sepsis is the primary cause of mortality worldwide, accounting for over 350,000 fatalities annually in the United States alone, a figure that surpasses deaths from opioid overdoses, prostate cancer, and... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.