We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Breakthrough Therapy Allows Paraplegics to Move Their Legs

By HospiMedica International staff writers
Posted on 07 May 2014
Print article
Image: Kent Stephenson, the second person to undergo epidural stimulation of the spinal cord, voluntarily raises his leg (Photo courtesy of KSCIRC).
Image: Kent Stephenson, the second person to undergo epidural stimulation of the spinal cord, voluntarily raises his leg (Photo courtesy of KSCIRC).
Epidural electrical stimulation of the spinal cord has allowed four young men who have been paralyzed for years to move their legs voluntarily.

Researchers at the University of Louisville (UL; KY, USA), The University of California, Los Angeles (UCLA, USA), and the Pavlov Institute of Physiology (Saint Petersburg, Russia) implanted an epidural stimulator delivering a continuous electrical current to lower spinal cords of the participants, who were classified as suffering from chronic, motor complete spinal cord injuries, and were unable to move their lower extremities. Once the signal was triggered, the spinal cord reengaged its neural network, allowing the participants to control and direct muscle movements.

In epidural stimulation, an electrical current is applied at varying frequencies and intensities to specific locations on the lumbosacral spinal cord, corresponding to the dense neural bundles that largely control the movement of the hips, knees, ankles and toes. Coupling epidural stimulation with rehabilitative therapy intensified therapy impact, and participants were able to initiate movement with less stimulation, demonstrating the ability of the spinal network to learn and improve nerve functions. Beyond regaining voluntary movement, the participants enjoyed overall health improvement, including increased muscle mass, blood pressure regulation, reduced fatigue, and dramatic improvements in their sense of well-being.

The study builds on initial research—published in May 2011 in the Lancet—that evaluated the effects of epidural stimulation in the first participant, Rob Summers of Portland (OR, USA), who recovered a number of motor functions as a result of that intervention. Three years later, the new study reports the impact of epidural stimulation on Summers and another three participants, who were all able to execute voluntary movements immediately following implantation and activation of the stimulator. The participants' results and recovery time were unexpected, which led researchers to speculate that some pathways may be intact post-injury and therefore able to facilitate voluntary movements. The study was published in the April 4, 2014, issue of Brain.

“Two of the four subjects were diagnosed as motor and sensory complete injured with no chance of recovery at all,” said lead author Claudia Angeli, PhD, an assistant professor at the UL Kentucky Spinal Cord Injury Research Center (KSCIRC). “Because of epidural stimulation, they can now voluntarily move their hips, ankles, and toes. This is groundbreaking for the entire field and offers a new outlook that the spinal cord, even after a severe injury, has great potential for functional recovery.”

"This is a wake-up call for how we see motor complete spinal cord injury,” said coauthor V. Reggie Edgerton, PhD, distinguished professor of integrative biology and physiology, neurobiology, and neurosurgery at UCLA. “We don't have to necessarily rely on regrowth of nerves in order to regain function. The fact that we've observed this in four out of four people suggests that this is actually a common phenomenon in those diagnosed with complete paralysis.”

“This research brings up an amazing number of possibilities for how we can develop interventions that will help people recover movement they have lost,” added Dr. Edgerton, who is also a member of the Reeve Foundation (Short Hills, NJ, USA) International Research Consortium on Spinal Cord Injury, which helped fund the research. “The circuitry in the spinal cord is remarkably resilient. Once you get them up and active, many physiological systems that are intricately connected and that were dormant come back into play.”

Related Links:

University of Louisville
The Pavlov Institute of Physiology
Reeve Foundation


New
Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Blood Warmer
SAHARA-III 230 V
New
Flexible Examination Light
ri-magic LED
New
Vital Signs Monitor
Aurus 20 A

Print article

Channels

AI

view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.