We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Machine Learning Could Reduce Hospitalizations by 30% During Pandemic

By HospiMedica International staff writers
Posted on 18 Sep 2024
Print article
Image: The machine learning model reduced hospitalizations by about 27% compared to actual and observed care (Photo courtesy of 123RF)
Image: The machine learning model reduced hospitalizations by about 27% compared to actual and observed care (Photo courtesy of 123RF)

During the COVID-19 pandemic, healthcare systems were pushed to their limits, and many facilities relied on a first-come, first-served approach or a patient's medical history to determine who received treatment. However, these methods often fail to consider the complex interactions between medications and patients, potentially overlooking those who could benefit the most from treatment. Now, new research suggests that machine learning may be a more effective way to allocate scarce treatments to vulnerable patients during public health crises.

The new study by researchers at the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) highlights the potential of machine learning to more efficiently allocate medical treatments in times of shortage, such as during a pandemic. The research demonstrated that machine learning, by analyzing how different patients respond to treatment, can provide more accurate, real-time information to doctors, health systems, and public health officials than traditional allocation methods. Published in JAMA Health Forum, the study revealed that using machine learning to allocate COVID-19 treatments could reduce hospitalizations by about 27% compared to current practices.

The researchers specifically examined the use of a novel method based on Policy Learning Trees (PLTs) to optimize the distribution of COVID-19 neutralizing monoclonal antibodies (mAbs) during periods of limited availability. The PLT approach was designed to prioritize treatments for individuals most at risk of hospitalization, maximizing overall benefit by factoring in variables that influence treatment effectiveness. The machine learning model was compared to real-world allocation decisions and a standard point-based system used during the pandemic. The results showed that the PLT-based model significantly reduced expected hospitalizations compared to both observed allocations and the Monoclonal Antibody Screening Score, a commonly used tool during the pandemic. The researchers hope their findings will encourage public health agencies, policymakers, and disaster management organizations to explore machine learning as a tool for future public health crises, ensuring that treatments are allocated more effectively when resources are limited.

“Existing allocation methods primarily target patients who have a high-risk profile for hospitalizations without treatments. They could overlook patients who benefit most from treatments,” said Mengli Xiao, PhD, an assistant professor in Biostatistics and Informatics, who developed the mAb allocation system based on the machine learning. “We developed a mAb allocation point system based on treatment effect heterogeneity estimates from machine learning. Our allocation prioritizes patient characteristics associated with large causal treatment effects, seeking to optimize overall treatment benefits when resources are limited.”

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Blood Sampling System
SafeSet
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Fluorescein-enhanced contrast imaging shows a rabbit’s normal sciatic nerve, left, and a damaged one (Photo courtesy of Osaka Metropolitan University)

Glowing Approach Helps Surgeons Assess Neural Blood Flow in Chronic Nerve Compression Neuropathy

In today's office environment, preventing the onset of carpal tunnel syndrome can be a daily challenge. In severe cases, surgery may be required to relieve nerve compression or repair damaged nerves.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The AI-powered platform improves point-of-care diagnostics with enhanced accuracy and real-time data (Photo courtesy of HueDx)

Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing

Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.