We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Mobile Phone Microscope Aids Malaria Diagnosis

By HospiMedica International staff writers
Posted on 16 Sep 2015
Print article
Image: The MOPID device atached to an iPhone (Photo courtesy Casey of Pirnstill/ TAMU).
Image: The MOPID device atached to an iPhone (Photo courtesy Casey of Pirnstill/ TAMU).
A 3-D printed polarized microscope that can be attached to a mobile phone could help faster malaria detection in areas with limited access to expensive lab facilities and expert technicians.

Developed by researchers at Texas A&M University (TAMU; College Station, TX, USA), the low-cost, lightweight, high quality mobile-optical-polarization imaging device (MOPID) offers 40–100x magnification, sufficient to image pigmentation of the hemozoin crystal, a waste product produced by ‎Plasmodium falciparum, the parasite that causes malaria. To perform the test, a glass slide with a blood smear is inserted into the device; the cell phone camera then takes a picture, and the photo shows the presence (or absence) of malaria.

The MOPID system consists of a commercial Apple iPhone 5S cellular phone, a snap on 3D-printed cartridge with individual compartments that allowed for polarized microscopy, two polarizer sheets, low-power white light emitting diodes (LEDs), and a plastic lens assembly configuration allowing for appropriate magnification, resolution, and field of view (FOV) for diagnosing the presence of the malaria parasite. The analyzer can be rotated to vary the degree of polarization, thus allowing for birefringence measurements from the hemozoin crystal.

The researchers are moving forward to construct a more durable, compact, and cheaper device for in vivo field-testing in Rwanda. They envision that the final product could be available for less than USD 1.00 per test result, not including the cost of the mobile phone attached to the MOPID device. A study describing the system and comparing performance to a Leica Microsystems (Wetzlar, Germany) DMLM polarized white light microscope was published on August 25, 2015, in Nature Scientific Reports.

“Because of the lack of access to lab testing, many health-care providers rely on rapid diagnostic tests, which are the equivalent of a pregnancy test for parasites. They are not always reliable and can lead to misdiagnosis and overtreatment. Giving medicine to those who don’t need it is causing drug-resistant strains of malaria to develop,” said lead author biomedical engineer Casey Pirnstill, BSc. “The device could be used by a nurse or other health outreach workers. The original photos would be saved in case further interpretation by a doctor is required.”

There are more than 200 million new malaria cases yearly, and high-quality microscopy is still the most accurate method for detection of infection. Microscopy, however, requires well-trained personnel and can be very time-consuming. As a result, less than half of the suspected malaria cases in Sub-Saharan Africa in 2012 received a diagnostic test.

Related Links:

Texas A&M University
Leica Microsystems


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
1.5T MRI Scanner
MAGNETOM Amira

Print article

Channels

Critical Care

view channel
Image: Peerbridge Cor is a 3-lead, 2-channel wireless AECG that simplifies the testing and diagnostic process (Photo courtesy of Peerbridge Health)

First-of-its-Kind Trial to Measure Ejection Fraction Severity Directly from AI-Enabled Remote ECG Wearable

Echocardiograms are a standard diagnostic tool to measure ejection fraction but require a clinical setting for administration. This can pose challenges such as scheduling delays, staffing shortages, accessibility... Read more

Surgical Techniques

view channel
Image: Fixation screws for ligament to bone repair (Photo courtesy of 4D Medicine)

Novel Biomaterial Platform Opens Up New Possibilities for Implants and Devices

Resorbable biomaterials, crucial for implantable medical devices, have seen little innovation over decades. Materials like Polylactic Acid (PLA), Polycaprolactone (PCL), and Poly Lactic-co-Glycolic Acid... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.