We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Tool Accurately Predicts Risk of Death in Patients with Suspected or Known Heart Disease

By HospiMedica International staff writers
Posted on 13 Dec 2021
Print article
Illustration
Illustration

A novel artificial intelligence (AI) score provides a more accurate forecast of the likelihood of patients with suspected or known coronary artery disease dying within 10 years than established scores used by health professionals worldwide.

The study by researchers at the Johns Hopkins Hospital (Baltimore, MD, USA) showed that unlike traditional methods based on clinical data, the new score also includes imaging information on the heart, measured by stress cardiovascular magnetic resonance (CMR). "Stress" refers to the fact that patients are given a drug to mimic the effect of exercise on the heart while in the magnetic resonance imaging scanner.

Risk stratification is commonly used in patients with, or at high risk of, cardiovascular disease to tailor management aimed at preventing heart attack, stroke and sudden cardiac death. Conventional calculators use a limited amount of clinical information such as age, sex, smoking status, blood pressure and cholesterol. This study examined the accuracy of machine learning using stress CMR and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance to existing scores.

The study included 31,752 patients referred for stress CMR because of chest pain, shortness of breath on exertion, or high risk of cardiovascular disease but no symptoms. High risk was defined as having at least two risk factors such as hypertension, diabetes, dyslipidaemia, and current smoking. The average age was 64 years and 66% were men. Information was collected on 23 clinical and 11 CMR parameters. Patients were followed up for a median of six years for all-cause death, which was obtained from the national death registry in France. During the follow up period, 2,679 (8.4%) patients died.

Machine learning was conducted in two steps. First it was used to select which of the clinical and CMR parameters could predict death and which could not. Second, machine learning was used to build an algorithm based on the important parameters identified in step one, allocating different emphasis to each to create the best prediction. Patients were then given a score of 0 (low risk) to 10 (high risk) for the likelihood of death within 10 years. The machine learning score was able to predict which patients would be alive or dead with 76% accuracy (in statistical terms, the area under the curve was 0.76).

Using the same data, the researchers calculated the 10-year risk of all-cause death using established scores (Systematic COronary Risk Evaluation [SCORE], QRISK3 and Framingham Risk Score [FRS]) and a previously derived score incorporating clinical and CMR data (clinical-stress CMR [C-CMR-10])2 – none of which used machine learning. The machine learning score had a significantly higher area under the curve for the prediction of 10-year all-cause mortality compared with the other scores: SCORE = 0.66, QRISK3 = 0.64, FRS = 0.63, and C-CMR-10 = 0.68.

“This is the first study to show that machine learning with clinical parameters plus stress CMR can very accurately predict the risk of death,” said study author Dr. Theo Pezel of the Johns Hopkins Hospital. “The findings indicate that patients with chest pain, dyspnoea, or risk factors for cardiovascular disease should undergo a stress CMR exam and have their score calculated. This would enable us to provide more intense follow-up and advice on exercise, diet, and so on to those in greatest need.”

“Stress CMR is a safe technique that does not use radiation. Our findings suggest that combining this imaging information with clinical data in an algorithm produced by artificial intelligence might be a useful tool to help prevent cardiovascular disease and sudden cardiac death in patients with cardiovascular symptoms or risk factors,” added Dr. Pezel.

Related Links:
Johns Hopkins Hospital

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.