We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Vibration Technology Improves Diagnosis of Dizziness

By HospiMedica International staff writers
Posted on 02 Feb 2022
Print article
Image: Professor Bo Håkansson undergoes VEMP testing using the B250 (Photo courtesy of Johan Bodell / Chalmers University of Technology)
Image: Professor Bo Håkansson undergoes VEMP testing using the B250 (Photo courtesy of Johan Bodell / Chalmers University of Technology)
A novel vibration device allows vestibular evoked myogenic potentials (VEMP) tests to be performed at lower frequencies and volume levels.

Developed at Chalmers University of Technology (Göteborg, Sweden), audio companies Ortofon (Lolland, Denmark) and Interacoustics, and in collaboration with Sahlgrenska Academy (SA; Göteborg, Sweden), the B250 vibration device has been optimized to trigger a VEMP test, which evokes a muscle reflex contraction in the neck and eye muscles. Vestibular function can be assessed by averaging muscle activity response to each sound. The vibrating device is compatible with standardized equipment for balance diagnostics.

The biggest advantage of the B250 is that it triggers the muscle reflex at very low frequencies and volumes (maximum sound level of 75 decibels), and much lower than in current methods, which use very high sound levels, and may in fact cause permanent hearing damage. Benefits also include safer testing for children, and that patients with impaired hearing function due to chronic ear infections or congenital malformations in the ear canal and middle ear can be diagnosed for the origin of their dizziness.

“We have developed a new type of vibrating device that is placed behind the ear of the patient during the test,” said lead developer Professor Bo Håkansson, PhD, of the biomedical signals and systems unit at Chalmers. “The vibrating device is small and compact in size, and optimized to provide an adequate sound level for triggering the reflex at frequencies as low as 250 Hz, which we have found to be optimal for VEMP stimulation. Previously, no vibrating device has been available that was directly adapted for this type of test of the balance system.”

“Thanks to this bone conduction technology, the sound levels which patients are exposed to can be minimized. The previous test was like a machine gun going off next to the ear – with this method it will be much more comfortable,” said Karl-Johan Fredén Jansson, PhD, also of Chalmers. “The test can be performed at 40 decibels lower than today's method using air conducted sounds through headphones. This eliminates any risk that the test itself could cause hearing damage.”

In a traditional vestibular investigation, two variants of VEMP tests are used today: air transmitted sound through headphones or bone conducted sounds via a vibrating device attached to the head. When air transmitted sounds are used, high sound levels are required, which is uncomfortable to the patient and there is a risk of hearing damage. For bone conducted sound, the sound levels are lower, but the equipment currently available on the market is large and cumbersome, and therefore difficult to use.


Related Links:
Chalmers University of Technology
Ortofon
Sahlgrenska Academy


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hospital Bed
Progressa Smart+

Print article
Detecto

Channels

Critical Care

view channel
Image: Vascular flow modeling exemplar; intracranial aneurysm flow, treatment and thrombosis (Photo courtesy of University of Leeds)

Faster, More Accurate Blood Flow Simulation to Revolutionize Treatment of Vascular Diseases

The field of vascular flow modeling is vital for understanding and treating vascular diseases, but traditionally, these methods require extensive labor and computation. Now, researchers have made groundbreaking... Read more

Surgical Techniques

view channel
Image: The prototype pacemaker is made of a specially engineered membrane (Photo courtesy of University of Chicago)

Ultra-Thin, Light-Controlled Pacemaker Regulates Heartbeats

Millions of individuals depend on pacemakers, small yet vital devices that help maintain a regular heartbeat by regulating the heart's electrical impulses. To minimize complications, there is growing interest... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.