Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Pioneering System Diagnoses Cancerous Tissue During Endoscopy

By HospiMedica International staff writers
Posted on 16 Jun 2014
A biomedical engineering team has developed a first of its kind in vivo molecular diagnostic system that makes highly objective, real-time cancer diagnosis during endoscopic examination a reality.

A National University of Singapore (NUS) team led by Associate Professor Huang Zhiwei, Department of Biomedical Engineering, has developed what is currently the only system clinically shown to be used in human patients for diagnosing even precancerous tissue in gastrointestinal tract during endoscopic examination in real time. More...
Unlike conventional endoscopy that relies on the physician's visual interpretation of the images followed by a pathologist's analysis of the biopsy specimen several days later, their diagnostic system utilizes computer analysis of biomolecular information that can provide diagnosis in real time. It is a paradigm shift from a complex to a simple, objective, and rapid diagnostic procedure.

The In Vivo Molecular Diagnostic (IVMD) system is based on confocal Raman spectroscopy and includes a proprietary confocal fiber-optic probe connected to a customized online software control system. The fiber-optic probe enables the collection of biomolecular fingerprint of tissues in less than a second—while the online software enables this information to be extracted and analyzed, with diagnostic result presented during endoscopic examination. The IVMD system has been used in more than 500 patients in Singapore across diverse cancer types such as stomach, esophagus, colon, rectum, head and neck, and cervix. The researchers have also published more than 40 peer-reviewed publications, most recently a report by Bergholt MS, et al. in the journal Gastroenterology, published January 2014.

“We are delighted to not only overcome the technical challenges of weak Raman signal, high fiber background noise, and lack of depth perception by using our specially designed probe, but also to enable real-time diagnostic results to be displayed during endoscopy with our customized software,” said Prof. Huang.

For the clinical testing, the team has been collaborating with researchers from the NUS Yong Loo Lin School of Medicine, led by its Dean, Associate Professor Khay Guan Yeoh. Prof. Yeoh commented, “This remarkable new system is the first such diagnostic probe that can be used real-time, inside the human body, providing almost instantaneous information on cellular changes, including cancer and pre-cancer. This is a first in the world development, pioneered here in Singapore. It has the potential to make enormous clinical impact to how cancer is diagnosed and managed. The immediate point-of-care diagnosis during live endoscopic examinations will provide benefits in time and cost-savings, and will improve our patients’ prognosis.”

“It has been a long tedious journey of more than 10 years. The journey could be longer if not for the excellent cross-disciplinary teamwork at NUS. The contribution of the NUS clinical team is invaluable in demonstrating the clinical benefits of the system,” added Prof Huang. Moving forward, the team will conduct larger scale clinical trials, mainly in gastrointestinal cancer, to further validate the utility of this novel system.

Related Links:

National University of Singapore
Video: Clinical Use of Raman spectroscopy software during an endoscopic procedure



Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mobile X-Ray System
K4W
Head Rest
Medifa 61114_3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.