Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Brain Mapping Tool Identifies Diseased Tissue

By HospiMedica International staff writers
Posted on 07 Jun 2017
A new device to map the brain during surgery provides higher resolution neural readings than existing tools used in the clinic and could enable doctors to perform safer, more precise brain surgeries.

Developed by researchers at the University of California, San Diego (UCSD, USA), Massachusetts General Hospital (MGH; Boston, USA), and other institutions, the device is an improved version of an electrocorticography electrode grid, which takes advantage of the electrochemical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). More...
Using PEDOT:PSS allows the new electrode grid to be about a thousand times thinner than current clinical electrode grids.

The PEDOT:PSS microelectrode arrays is just 6 micrometers thick (versus several millimeters in current grids), which allows it to conform better to the intricately curved surface of the brain and obtain better readings. The new electrode grid also contains a much higher density of electrodes, since they can be spaced 25 times closer than those in current clinical electrode grids, enabling detection of changes in amplitude across pial surface distances as small as 400 µm, resulting in higher resolution recordings. The researchers also conducted several clinical tests.

In one test, the researchers performed background readings of a patient's brain waves both awake and unconscious. The PEDOT:PSS electrode grid identified normal functioning areas of the brain versus where the seizure areas with more detailed and higher resolution readings than the clinical electrode grid. Other tests that monitored the brain activity of patients performing cognitive tasks showed that both the PEDOT:PSS and standard electrode grids could differentiate between visual and audio inputs. The study was published on May 12, 2017, in Advanced Functional Materials.

“By providing higher resolution views of the human brain, this technology can improve clinical practices and could lead to high performance brain machine interfaces,” said senior author Professor Vikash Gilja, PhD, of the department of engineering at UC San Diego. “These electrodes occupy minuscule volumes; imagine Saran Wrap, but thinner. And we demonstrate that they can capture neural activity from the human brain at least as well as conventional electrodes that are orders of magnitude larger.”

Related Links:
University of California, San Diego
Massachusetts General Hospital


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Adjustable Mobile Barrier
M-458
Gas Consumption Analyzer
Anesthetic Gas Consumption Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.