Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Elastomeric Biomaterial Guards against Incisional Hernia

By HospiMedica International staff writers
Posted on 24 Jul 2017
A new study describes how a biodegradable polycarbonate elastomer (CC-DHA) can be used as a protective visceral barrier during abdominal laparotomy closure.

Developed by researchers at Weill Cornell Medical Center (New York, NY, USA) and Cornell University (Cornell; Ithaca, NY, USA), the CC-DHA, which is comprised of a polycarbonate cross-linked network of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol), undergoes a controlled solid-to-liquid phase transition following hydrolytic cleavage of the carbonate cross-linked network by ketone functionality of the dihydroxyacetone. More...
The result is a rapidly degrading barrier that can be left in situ to facilitate abdominal fascial closure.

Using a murine laparotomy model, the researchers successfully demonstrated the material provided a puncture resistant, biocompatible, and degradable matrix that underwent rapid dissolution within three hours, without evidence of toxicity or intra-abdominal scarring. According to the researchers, the unique characteristics make the biomaterial extremely useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with a potential for wider application across a wide range of surgical and medical applications. The study was published on May 31, 2017, in Acta Biomaterialia.

“If all goes well, this flexible material might one day help surgeons more confidently and securely close abdominal incisions. I hope it will lead to fewer incisional hernias,” said senior author Professor Jason Spector, MD, PhD, of the departments of plastic surgery and biomedical engineering. “In addition, the implantable device could be used in a multitude of situations where surgeons want to protect vital structures from inadvertent needle puncture, but using a removable retractor would prove difficult or impossible.”

Secure closure of the fascial layers after entry into the peritoneal cavity is crucial to prevent incisional hernia, yet appropriate purchase of the tissue can be challenging due to the proximity of the underlying protuberant bowel, which may become punctured by the surgical needle or strangulated by the suture itself. Devices currently employed to provide visceral protection during abdominal closure, such as the metal malleable retractor and Glassman Visceral Retainer, are unable to provide complete protection, as they must be removed prior to complete closure.

Related Links:
Weill Cornell Medical Center
Cornell University

Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Absorbable Monofilament Mesh
Phasix Mesh
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.