Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Bio-Inspired Imager Improves Cancer Surgery

By HospiMedica International staff writers
Posted on 16 Apr 2018
A new camera that mimics the intricate visual system of a butterfly can improve sensitivity in near-infrared (NIR) fluorescence image-guided surgery, claims a new study.

Developed at the University of Illinois (UI; Urbana-Champaign, USA) and Washington University in St. More...
Louis (WUSTL; MO, USA), the new camera is comprised of an artificial multispectral sensor--inspired by the Morpho butterfly’s compound eye--that interlaces nano-scale spectral tapetal filters with a photodetector array, thus enabling collection of color and NIR fluorescence information on one imaging device. The single-chip multispectral imager is 1,000 times more sensitive and offers seven times better spatial co-registration accuracy than current clinical imaging systems.

The unique design allows each pixel to take in the number of photons needed to build up an image; by changing exposure time so as to allow each pixel to detect the photons necessary, bright fluorescence images can be created without overexposing the color image of the tissue. Testing showed the camera seamlessly integrates into the surgical workflow, providing real-time information on cancerous tissue and sentinel lymph nodes. Integrating the detector array and optics into a single sensor makes it small, inexpensive, and insensitive to temperature changes. The study was published in the April 2018 issue of Optica.

“We realized that the problems of today's infrared imagers could be mitigated by using nanostructures similar to those in the Morpho butterfly. Their compound eyes contain photoreceptors located next to each other such that each photoreceptor senses different wavelengths of light in a way that is intrinsically co-registered,” said lead author Missael Garcia, PhD, of UI. “The bioinspired imager would be useful for removing various types of cancers, including melanomas, prostate cancer, and head and neck cancers.”

"During surgery, it is imperative that all the cancerous tissue is removed, and we've created an imaging platform that could help surgeons do this in any hospital around the world because it is small, compact and inexpensive,” said senior author Professor Viktor Gruev, PhD. “Under bright surgical lights, our instrument was 1,000 times more sensitive to fluorescence than the imagers currently approved. Because the bioinspired imager can reveal fluorescence that is deep in the tissue, it sped up the process of lymph node identification and helped surgeons find lymph nodes that couldn't be seen by eyesight alone.”

Image-guided surgery can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art NIR fluorescence-imaging systems are bulky and costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on unaided vision and palpation as primary sensing modalities for distinguishing cancerous from healthy tissue.

Related Links:
University of Illinois
Washington University in St. Louis


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mammography System (Analog)
MAM VENUS
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.