Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Hydrogel Injections Customize Cartilage Repair

By HospiMedica International staff writers
Posted on 09 Oct 2018
A novel bioprinting device can build three-dimensional (3D) bioscaffolds capable of regenerating deficient cartilage tissue, according to a new study.

Developed at the University of Melbourne (Melbourne, Australia), St. More...
Vincent's Hospital (Melbourne, Australia), and other institutions, the handheld BioPen 3D additive printing device can extrude hydrogel in a core/shell manner that preserves cell viability during the biofabrication process. For the study, human adipose derived mesenchymal stem cells (hADSCs) were harvested from the infra-patellar fat pad of donor patients affected by osteoarthritis, and cultured in the presence of chondrogenic stimuli for eight weeks in vitro.

In order to prove that they can be utilized for biofabrication of human cartilage, the hADSCs were laden in gelatin methacrylate (GelMa) and hyaluronic acid methacrylate (HAMa) hydrogels, and subsequently extruded via the BioPen to generate bioscaffolds that formed hyaline-like cartilage. To control the size and shape of the BioPen scaffolds, the researchers used polydimethylsiloxane (PDMS) cylindrical molds to create a desired shape with regulated cell numbers. Immediately after extrusion, samples were irradiated with ultraviolet (UV) light for polymerization.

Capacity to produce hyaline-like neocartilage was analyzed via histology, gene, and protein expression analysis. Neocartilage formation was defined by protein localization and organization of the main components of hyaline cartilage, and a series of mechanical loading tests for compression and atomic force microscopy (AFM) were used to determine surface topology and physical properties with time. The results revealed generation of mature fibrillary collagen after eight weeks of chondrogenesis. The study was published on August 21, 2018, in Biofabrication.

“A comprehensive characterization including gene and protein expression analyses, immunohistology, confocal microscopy, second harmonic generation, light sheet imaging, atomic force mycroscopy and mechanical unconfined compression demonstrated that our strategy resulted in human hyaline-like cartilage formation,” concluded senior author Claudia Di Bella, PhD, of the University of Melbourne, and colleagues. “Our in situ biofabrication approach represents an innovation with important implications for customizing cartilage repair in patients with cartilage injuries and osteoarthritis.”

Regenerating robust articular hyaline-like cartilage is a key priority in musculoskeletal tissue engineering in order to prevent cost-intensive degenerative osteoarthritis that limits quality of life. The integration of mesenchymal stem cells and 3D printing technologies has shown significant promise in bone tissue engineering, but the key challenge remains in transferring the bench-based technology to the operating room for real-time applications.

Related Links:
University of Melbourne
St. Vincent's Hospital


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Hemostatic Agent
HEMOBLAST Bellows
ow Frequency Pulse Massager
ET10 L
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.