We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




World’s First 3D Human Spinal Cord Implant May Allow Paralyzed People to Walk Again

By HospiMedica International staff writers
Posted on 08 Feb 2022

For the first time in the world, researchers have engineered human spinal cord implants for treating paralysis, marking a scientific breakthrough that may enable paralyzed people to walk again. More...

The researchers from Sagol Center for Regenerative Biotechnology at Tel Aviv University (Tel Aviv, Israel) have engineered 3D human spinal cord tissues and implanted them in lab model with long-term chronic paralysis. The results were highly encouraging: an approximately 80% success rate in restoring walking abilities. Now the researchers are preparing for the next stage of the study: clinical trials in human patients. They hope that within a few years the engineered tissues will be implanted in paralyzed individuals enabling them to stand up and walk again. The technology behind the breakthrough uses patient tissue samples, transforming it into a functioning spinal cord implant via a process that mimics the development of the spinal cord in human embryos.

"Our technology is based on taking a small biopsy of belly fat tissue from the patient. This tissue, like all tissues in our body, consists of cells together with an extracellular matrix (comprising substances like collagens and sugars)," said Prof. Tal Dvir who led the research team that conducted the groundbreaking study. "After separating the cells from the extracellular matrix we used genetic engineering to reprogram the cells, reverting them to a state that resembles embryonic stem cells – namely cells capable of becoming any type of cell in the body. From the extracellular matrix we produced a personalized hydrogel, that would evoke no immune response or rejection after implantation. We then encapsulated the stem cells in the hydrogel and in a process that mimics the embryonic development of the spinal cord we turned the cells into 3D implants of neuronal networks containing motor neurons."

The human spinal cord implants were then implanted in lab models, divided into two groups: those who had only recently been paralyzed (the acute model) and those who had been paralyzed for a long time – equivalent to a year in human terms (the chronic model). Following the implantation, 100% of the lab models with acute paralysis and 80% of those with chronic paralysis regained their ability to walk.

"The model animals underwent a rapid rehabilitation process, at the end of which they could walk quite well. This is the first instance in the world in which implanted engineered human tissues have generated recovery in an animal model for long-term chronic paralysis – which is the most relevant model for paralysis treatments in humans. There are millions of people around the world who are paralyzed due to spinal injury, and there is still no effective treatment for their condition. Individuals injured at a very young age are destined to sit in a wheelchair for the rest of their lives, bearing all the social, financial, and health-related costs of paralysis. Our goal is to produce personalized spinal cord implants for every paralyzed person, enabling regeneration of the damaged tissue with no risk of rejection," added Prof. Dvir.

Related Links:
Tel Aviv University 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Adjustable Mobile Barrier
M-458
Open Stapler
PROXIMATE Linear Cutter
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.