We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
09 Dec 2022 - 11 Dec 2022

Self-Powered Smart Implants for Spinal Fusion Surgery Monitor Healing

By HospiMedica International staff writers
Posted on 27 Jun 2022
Print article
Image: 3D-printed smart metamaterial implants could monitor spinal healing (Photo courtesy of University of Pittsburgh)
Image: 3D-printed smart metamaterial implants could monitor spinal healing (Photo courtesy of University of Pittsburgh)

Spinal fusion - fusing two vertebrae together - can treat a wide variety of spinal disorders. Often, surgeons will use a cage to provide support where the disk once was between the vertebrae. But what if those cages could support the spine’s healing in more ways than one? Now, researchers are creating patient-specific 3D-printed smart metamaterial implants that double as sensors to monitor spinal healing.

Researchers at the University of Pittsburgh (Pittsburgh, PA, USA) have developed a new class of multifunctional mechanical metamaterials, which act as their own sensors, recording and relaying important information about the pressure and stresses on its structure. The so-called “meta-tribomaterials” a.k.a. self-aware metamaterials, generate their own power and can be used for a wide array of sensing and monitoring applications.

The material is designed such that under pressure, contact-electrification occurs between its conductive and dielectric microlayers, creating an electric charge that relays information about the condition of the material matrix. In addition, it naturally inherits the outstanding mechanical tunability of standard metamaterials. The power generated using its built-in triboelectric nanogenerator mechanism eliminates the need for a separate power source, and a tiny chip records data about the pressure on the cage, which is an important indicator of healing. The data can then be read noninvasively using a portable ultrasound scanner.

Not only is the proposed cage unique in its sensing capabilities, but it’s also made of a highly tunable material that can be customized to the patient’s needs. The researchers have successfully tested the device in human cadavers and are looking to move on to animal models next. Because the material itself is incredibly tunable and scalable, the smart sensor design could be adapted to many other medical applications in the future, like cardiovascular stents or components for knee or hip replacements.

“Spinal fusion cages are being widely used in spinal fusion surgeries, but they’re usually made of titanium or PEEK polymer materials (a semi-crystalline, high-performance engineering thermoplastic) with certain mechanical properties,” said Amir Alavi, assistant professor of civil and environmental engineering at the University of Pittsburgh. “The stiffness of our metamaterial interbody cages can be readily tuned. The implant can be 3D-printed based on the patient’s specific anatomy before surgery, making it a much more natural fit.”

“This is a first-of-its-kind implant that leverages advances in nanogenerators and metamaterial to build multifunctionality into the fabric of medical implants,” added Alavi. “This technological advancement is going to play a major part in the future of implantable devices.”

Related Links:
University of Pittsburgh 

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
Renin Control
Lumipulse Renin Control
New
Electronic Pipette
Eppendorf Xplorer/ Eppendorf Xplorer plus
New
Nucleic Acid Extractor
SMART-05

Print article
Radcal

Channels

AI

view channel
Image: AI transforms smartwatch ECG signals into a diagnostic tool for heart failure (Photo courtesy of Pexels)

AI-Based Smartwatch Accurately Detects Heart Failure Using ECG Signals

People with a weak heart pump might not have symptoms, but this common form of heart disease affects about 2% of the population and 9% of people over 60. When the heart cannot pump enough oxygen-rich blood,... Read more

Critical Care

view channel
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)

Rapid Pathogen Capture Technology Could Accelerate Diagnosis of Bloodstream Infections and Sepsis

Bloodstream infections (BSIs) with various microbial pathogens can rapidly escalate to life-threatening sepsis when the body is overwhelmed by the multiplying invaders and shuts down its organs’ functions.... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.