We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Tiny Surgical Robot Travels Deep Into Lungs to Detect and Treat Cancer

By HospiMedica International staff writers
Posted on 28 Jul 2023

Lung cancer currently holds the grim distinction of being the leading cause of cancer deaths globally. More...

The majority of these cases, approximately 84%, are early-stage non-small cell lung cancer for which surgery is the standard treatment. However, the highly invasive nature of such procedures, often involving significant tissue removal, renders it unsuitable for all patients and can adversely impact lung function. The introduction of lung cancer screening programs has improved survival rates but also emphasized the critical need for non-invasive diagnostic and treatment methods. Now, researchers have created a miniature robot capable of traveling deep into the lungs to identify and treat early signs of cancer. This remarkably small, ultra-soft, magnetically controlled tentacle, merely two millimeters in diameter, can access the smallest bronchial tubes, potentially revolutionizing lung cancer treatment by allowing a more precise, personalized, and minimally invasive approach.

The magnetic tentacle robot, developed by engineers, scientists and clinicians based at the University of Leeds’ (West Yorkshire, UK) STORM Lab was tested on cadaver lungs. The researchers discovered that it can travel 37% deeper into the lungs compared to standard equipment, causing less tissue damage. The robot not only enhances navigation during lung biopsies but also paves the way for significantly less invasive treatments. This technology allows medical professionals to specifically target harmful cells while sparing healthy tissues and organs, thus preserving normal function. The team's next goal is to gather the necessary data to initiate human trials.

“This is a really exciting development,” said Professor Pietro Valdastri, Director of the STORM Lab and research supervisor. “This new approach has the advantage of being specific to the anatomy, softer than the anatomy and fully shape-controllable via magnetics. These three main features have the potential to revolutionize navigation inside the body.”

“Our goal was, and is, to bring curative aid with minimal pain for the patient,” added Dr. Giovanni Pittiglio, who carried out the research while conducting his PhD. “Remote magnetic actuation enabled us to do this using ultra-soft tentacles which can reach deeper, while shaping to the anatomy and reducing trauma.”

Related Links:
University of Leeds 


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Bipolar Coagulation Generator
Aesculap
Electric Bed
DIXION Intensive Care Bed
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.