We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics .

Download Mobile App

New Soft Robotic System to Streamline Brain Surgery

By HospiMedica International staff writers
Posted on 23 Oct 2023
Print article
Image: Air pressure within the two channels of the robotic catheter tip determines whether it deflects left or right (Photo courtesy of Johns Hopkins University)
Image: Air pressure within the two channels of the robotic catheter tip determines whether it deflects left or right (Photo courtesy of Johns Hopkins University)

Navigating the complex blood vessels of the brain using traditional surgical instruments is an intricate task, even for highly skilled surgeons. Robotic assistance has the potential to help neurosurgeons operate much more easily. Now, researchers have developed a foundational model for a soft robotic tool and control system that could give surgeons better control and precision within the brain while performing difficult neurosurgeries. Recent studies have shown that this system is intuitive and highly accurate. Preliminary findings indicate that this robot could potentially make minimally invasive brain surgeries for critical conditions like aneurysms more efficient and effective.

One standard way to treat a brain aneurysm — a weakened blood vessel that bulges and fills with blood —is to guide a plastic tube, known as a catheter, through an artery usually starting at the groin. The aim is to reach the aneurysm and seal it without damaging any other vessels along the way. Surgeons traditionally bend the catheter tips for better navigation and then manually turn them as they move toward the aneurysm. After studying surgical procedures and gathering insights from neurosurgeons, researchers at Johns Hopkins University (Baltimore, MD, USA) and the University of Maryland (College Park, MD, USA) concluded that a steerable robotic tool could greatly improve the process.

The researchers engineered a catheter tip controlled by air pressure, often referred to as pneumatic. They used 3D printing to create the tip from a soft, flexible resin and included two hollow channels along its length. When individually pressurized, these channels cause the tip to bend either left or right. While the idea of a bendable catheter tip is not new, the researchers focused on an unmet need—integrating a control system that aligns with existing clinical practices. They developed a hand-operated dial that allows surgeons to adjust the catheter tip’s position with more precision, as well as providing haptic feedback to indicate the bending of the tip. This system allows surgeons to advance the catheter with one hand while precisely controlling its angle with the other.

To evaluate the new tool, the researchers had two participants—one experienced neurosurgeon and another without surgical experience—maneuver the robotic tip to hit an array of tiny targets. They used one hand to advance the catheter and the other to control the dial, bending the tips closer to each target. Both were successful in achieving sub-millimeter precision, which is less than the diameter of brain vessels and aneurysm openings. The neurosurgeon was naturally faster and more accurate, but the novice showed matching accuracy levels over time. Encouraged by these positive results, the research team is keen to further develop the robotic tool. The researchers plan to reduce its size to make it more clinically applicable and test it in more anatomically accurate settings. Additionally, they aim to expand the tool's capabilities by adding a series of tips, allowing it to form more complex shapes and better navigate the complex brain vasculature.

“The soft microcatheter tip is highly innovative and could be key for widespread use of robotics in endovascular surgery,” said Moria Bittmann, Ph.D., director of the NIBIB Robotics Program.

Related Links:
Johns Hopkins University 
University of Maryland

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Specimen Collection & Transport
X-Ray Meter
Gold Supplier
Temperature Monitor
ThermoScan Temperature Monitoring Unit

Print article


Critical Care

view channel
Image: The BASHIR Endovascular Catheter was recently approved by the U.S. FDA (Photo courtesy of THROMBOLEX)

Novel Endovascular Catheter Opens Blocked Arteries Deep Within Lungs

The occlusion of small lung arteries is the main cause of the reduction in blood flow in patients with acute pulmonary embolism. The more occlusions that a patient has, the lower the chances of survival.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.