We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Breakthrough Electrochemical Technology to Revolutionize Treatment of Internal Wounds and Cancerous Tumors

By HospiMedica International staff writers
Posted on 20 Feb 2024
Print article
Image: The treatment involves boosting the plasma activation of hydrogel dressings (Photo courtesy of 123RF)
Image: The treatment involves boosting the plasma activation of hydrogel dressings (Photo courtesy of 123RF)

Worldwide, over 540 million people live with diabetes, and about 30% of these individuals are likely to develop a foot ulcer at some point in their lives. Managing chronic wounds, including diabetic foot ulcers, incurs costs exceeding USD 17 billion annually, a figure projected to rise due to increasing obesity rates and sedentary lifestyles. The current standard treatments for chronic wounds involve antibiotics and silver dressings, each with significant drawbacks. The growing resistance to antibiotics presents a global health challenge, while concerns about silver-induced toxicity have led to a phase-out of silver dressings in Europe. Now, scientists have pioneered a groundbreaking treatment that replaces antibiotics and silver-based dressings with plasma, an ionized gas. This innovative approach, with a primary focus on diabetic foot ulcers, holds potential for broad application across various chronic wounds and even internal infections. The researchers are optimistic that this method could significantly transform the treatment of diabetic foot ulcers, internal wounds, and potentially cancerous tumors.

The treatment developed by a team of international scientists led by University of South Australia (Adelaide, Australia) focuses on enhancing the efficacy of hydrogel dressings using plasma. This technique involves enriching the plasma activation of hydrogels with a unique combination of chemical oxidants, aiding in the decontamination and healing of chronic wounds. Cold plasma ionized gas has already demonstrated its effectiveness in clinical trials, controlling infection and fostering healing. This efficacy can be attributed to the robust mix of reactive oxygen and nitrogen species (RONS) produced when plasma interacts and activates ambient air's oxygen and nitrogen molecules. Although plasma-activated hydrogel therapy (PAHT) has shown promising results, a significant challenge was infusing hydrogels with clinically effective RONS concentrations. The team addressed this by utilizing an innovative electrochemical method to enhance hydrogel activation.

The researchers demonstrated that plasma-activated hydrogel dressings loaded with RONS are remarkably potent, capable of eradicating common bacteria like E. coli and P. aeruginosa, often responsible for infected wounds. Furthermore, these plasma-activated hydrogels can also stimulate the body's immune system, supporting the fight against infections. Going forward, plasma technology could be adapted to treat cancerous tumors. It would involve injecting gels containing activated drugs into the body, with the active components being gradually released to improve treatment effectiveness and tumor penetration. The research team is now preparing for clinical trials, aiming to refine this electrochemical technology for the treatment of human patients.

“Chronic wound infections are a silent pandemic threatening to become a global healthcare crisis. It is imperative that we find alternative treatments to antibiotics and silver dressings because when these treatments don’t work, amputations often occur,” said University of South Australia physicist Dr. Endre Szili, who led the study. “A major advantage of our PAHT technology is that it can be used for treating all wounds. It is an environmentally safe treatment that uses the natural components in air and water to make its active ingredients, which degrade to non-toxic and biocompatible components.”

Related Links:
University of South Australia

Gold Member
12-Channel ECG
CM1200B
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Workstation
X40

Print article

Channels

Surgical Techniques

view channel
Image: The endoscopic device can 3D image the stiffness of individual biological cells and complex organisms (Photo courtesy of University of Nottingham)

World’s First Microscopic Probe to Revolutionize Early Cancer Diagnosis

In the early stages of cancer, the cells are significantly softer than normal cells, which facilitates their movement through small spaces and contributes to the rapid spread of the disease, a process... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.